바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073
  • KCI

단행본 서명의 단어 임베딩에 따른 자동분류의 성능 비교

Performance Comparison of Automatic Classification Using Word Embeddings of Book Titles

정보관리학회지 / Journal of the Korean Society for Information Management, (P)1013-0799; (E)2586-2073
2023, v.40 no.4, pp.307-327
https://doi.org/10.3743/KOSIM.2023.40.4.307
이용구 (경북대학교 문헌정보학과)

초록

이 연구는 짧은 텍스트인 서명에 단어 임베딩이 미치는 영향을 분석하기 위해 Word2vec, GloVe, fastText 모형을 이용하여 단행본 서명을 임베딩 벡터로 생성하고, 이를 분류자질로 활용하여 자동분류에 적용하였다. 분류기는 k-최근접 이웃(kNN) 알고리즘을 사용하였고 자동분류의 범주는 도서관에서 도서에 부여한 DDC 300대 강목을 기준으로 하였다. 서명에 대한 단어 임베딩을 적용한 자동분류 실험 결과, Word2vec와 fastText의 Skip-gram 모형이 TF-IDF 자질보다 kNN 분류기의 자동분류 성능에서 더 우수한 결과를 보였다. 세 모형의 다양한 하이퍼파라미터 최적화 실험에서는 fastText의 Skip-gram 모형이 전반적으로 우수한 성능을 나타냈다. 특히, 이 모형의 하이퍼파라미터로는 계층적 소프트맥스와 더 큰 임베딩 차원을 사용할수록 성능이 향상되었다. 성능 측면에서 fastText는 n-gram 방식을 사용하여 하부문자열 또는 하위단어에 대한 임베딩을 생성할 수 있어 재현율을 높이는 것으로 나타났다. 반면에 Word2vec의 Skip-gram 모형은 주로 낮은 차원(크기 300)과 작은 네거티브 샘플링 크기(3이나 5)에서 우수한 성능을 보였다.

keywords
단어 임베딩, 자동분류, 듀이십진분류법(DDC)

Abstract

To analyze the impact of word embedding on book titles, this study utilized word embedding models (Word2vec, GloVe, fastText) to generate embedding vectors from book titles. These vectors were then used as classification features for automatic classification. The classifier utilized the k-nearest neighbors (kNN) algorithm, with the categories for automatic classification based on the DDC (Dewey Decimal Classification) main class 300 assigned by libraries to books. In the automatic classification experiment applying word embeddings to book titles, the Skip-gram architectures of Word2vec and fastText showed better results in the automatic classification performance of the kNN classifier compared to the TF-IDF features. In the optimization of various hyperparameters across the three models, the Skip-gram architecture of the fastText model demonstrated overall good performance. Specifically, better performance was observed when using hierarchical softmax and larger embedding dimensions as hyperparameters in this model. From a performance perspective, fastText can generate embeddings for substrings or subwords using the n-gram method, which has been shown to increase recall. The Skip-gram architecture of the Word2vec model generally showed good performance at low dimensions(size 300) and with small sizes of negative sampling (3 or 5).

keywords
Word2vec, GloVe, fastText, word embedding, automatic classification, Dewey Decimal Classification(DDC), Word2vec, GloVe, fastText
투고일Submission Date
2023-11-20
수정일Revised Date
2023-12-08
게재확정일Accepted Date
2023-12-13

정보관리학회지