ISSN : 1013-0799
정보통신 기술이 빠르게 발전하면서 데이터의 생산 속도가 급증하였고, 이는 빅데이터라는 개념으로 대표되고 있다. 단시간에 데이터 규모가 급격하게 증가한 빅데이터에 대해 품질과 신뢰성에 대한 논의도 진행되고 있다. 반면 스몰데이터는 품질이 우수한 최소한의 데이터로, 특정 문제 상황에 필요한 데이터를 의미한다. 문화예술 분야는 다양한 유형과 주제의 데이터가 존재하며 빅데이터 기술을 활용한 연구가 진행되고 있다. 하지만 문화예술기관의 기본정보가 정확하게 제공되고 활용되는지를 탐색한 연구는 부족하다. 기관의 기본정보는 대부분의 빅데이터 분석에서 사용하는 필수적인 근거일 수 있고, 기관을 식별하기 위한 출발점이 된다. 본 연구는 문화예술 기관의 기본정보를 다루는 데이터를 수집하여 공통 메타데이터를 정의하고, 공통 메타데이터를 중심으로 기관을 연계하는 지식그래프 형태로 스몰데이터를 구축하였다. 이는 통합적으로 문화예술기관의 유형과 특징을 탐색할 수 있는 방안이 될 수 있다.
With the rapid development of information and communication technology, the speed of data production has increased rapidly, and this is represented by the concept of big data. Discussions on quality and reliability are also underway for big data whose data scale has rapidly increased in a short period of time. On the other hand, small data is minimal data of excellent quality and means data necessary for a specific problem situation. In the field of culture and arts, data of various types and topics exist, and research using big data technology is being conducted. However, research on whether basic information about culture and arts institutions is accurately provided and utilized is insufficient. The basic information of an institution can be an essential basis used in most big data analysis and becomes a starting point for identifying an institution. This study collected data dealing with the basic information of culture and arts institutions to define common metadata and constructed small data in the form of a knowledge graph linking institutions around common metadata. This can be a way to explore the types and characteristics of culture and arts institutions in an integrated way.