ISSN : 1013-0799
This study investigates the development path and intellectual structure of data literacy research, aiming to identify emerging topics in the field. A comprehensive search for data literacy-related articles on the Web of Science reveals that the field is primarily concentrated in Education & Educational Research and Information Science & Library Science, accounting for nearly 60% of the total. Citation network analysis, employing the PageRank algorithm, identifies key papers with high citation impact across various topics. To accurately trace the development path of data literacy research, an enhanced PageRank main path algorithm is developed, which overcomes the limitations of existing methods confined to the Education & Educational Research field. Keyword bibliographic coupling analysis is employed to unravel the intellectual structure of data literacy research. Utilizing the PNNC algorithm, the detailed structure and clusters of the derived keyword bibliographic coupling network are revealed, including two large clusters, one with two smaller clusters and the other with five smaller clusters. The growth index and mean publishing year of each keyword and cluster are measured to pinpoint emerging topics. The analysis highlights the emergence of critical data literacy for social justice in higher education amidst the ongoing pandemic and the rise of AI chatbots. The enhanced PageRank main path algorithm, developed in this study, demonstrates its effectiveness in identifying parallel research streams developing across different fields.