• P-ISSN2233-4203
  • E-ISSN2093-8950
  • ESCI, SCOPUS, KCI

Article Detail

Home > Article Detail
  • P-ISSN 2233-4203
  • E-ISSN 2093-8950

Differential Protein Quantitation in Mouse Neuronal Cell Lines using Amine- Reactive Isobaric Tagging Reagents with Tandem Mass Spectrometry

Mass Spectrometry Letters / Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2010, v.1 no.1, pp.25-28
https://doi.org/10.5478/MSL.2010.1.1.025
Cho Kun (Korea Basic Science Institute, Sogang University)
Park Gun Wook (Korea Basic Science Institute, Chungnam National University)
Kim Jin Young (Korea Basic Science Institute)
Lee Sang Kwang (Korea Basic Science Institute)
Oh Han Bin (Sogang University)
Yoo Jong Shin (Korea Basic Science Institute, Chungnam National University)
  • Downloaded
  • Viewed

Abstract

The high-throughput identification and accurate quantification of proteins are essential strategies for exploring cellularfunctions and processes in quantitative proteomics. Stable isotope tagging is a key technique in quantitative proteomicresearch, accompanied by automated tandem mass spectrometry. For the differential proteome analysis of mouse neuronal celllines, we used a multiplexed isobaric tagging method, in which a four-plex set of amine-reactive isobaric tags are available forpeptide derivatization. Using the four-plex set of isobaric tag for relative and absolute quantitation (iTRAQ) reagents, we analyzedthe differential proteome in several stroke time pathways (0, 4, and 8 h) after the mouse neuronal cells have been stressed usinga glutamate oxidant. In order to obtain a list of the differentially expressed proteins, we selected those proteins which had apparentlychanged significantly during the stress test. With 95% of the peptides showing only a small variation in quantity before andafter the test, we obtained a list of eight up-regulated and four down-regulated proteins for the stroke time pathways. To validatethe iTRAQ approach, we studied the use of oxidant stresses for mouse neuronal cell samples that have shown differential proteome inseveral stroke time pathways (0, 4, and 8 h). Results suggest that histone H1 might be the key protein in the oxidative injurycaused by glutamate-induced cytotoxicity in HT22 cells.

keywords
iTRAQ, MALDI-MS/MS, Proteomics, Mouse neuronal cells


Reference

1

Gygi, S. P. (1999). . Nat, Biotechnol, 17, 994-.

2

Wilm, M. (1996). . Nature, 379, 466-.

3

Link, A. J. (1997). . Electrophoresis, 18, 1314-.

4

Sachon, E. (2006). . Rapid Commun. Mass Spectrom, 20, 1127-.

5

Gygi, S. P. (1999). . Mol. Cell. Biol, 19, 1720-.

6

Desiderio, D. M. (1983). . Biomed. Mass Spectrom, 10, 471-.

7

Richard, D. U. (2005). . Mol. Cell Proteomics, 4, 924-.

8

Philip, L. R. (2004). . Mol. Cell. Proteomics, 3, 1154-.

9

Wells, W. W. (2006). . J. Proteome Res, 5, 651-.

10

Gil-Saeng Jeong. (2010). Neuroprotective Effects of Constituents of the Root Bark of Dictamnus dasycarpus in Mouse Hippocampal Cells. Archives of Pharmacal Research, 33(8), 1269-1275.

11

Lin, W. T. (2006). . J. Proteome Res, 5, 2328-.

12

Claire, R. (2006). . Mol. Cell. Proteomics, 5, 68-.

13

Choi, S. K. (2009). . Biochemical and Biophysical Research Comunucations, 383, 135-.

14

Bond, C. E. (2006). . Eur. J. Neurosci, 24(2), 381-.

15

Han, S. P. (2010). . Biochem. J, 430, 379-.

16

Gygi, S. P. (1999). . Electrophoresis, 20(2), 310-.

17

Jeremy, E. M. (2006). . Rapid Commun. Mass Spectrom, 20, 904-.

18

Wang, K. (2010). . Journal of Controlled Release, 09, 10-.

19

Ha, J. S. (2010). . Brain Research, 1359, 291-.

Submission Date
2010-11-14
Revised Date
2010-11-14
Accepted Date
2010-11-14
상단으로 이동

Mass Spectrometry Letters