Article Detail

Home > Article Detail
  • P-ISSN 2233-4203
  • E-ISSN 2093-8950

Comparative GC-MS Based In vitro Assays of 5α-Reductase Activity Using Rat Liver S9 Fraction

Mass Spectrometry Letters / Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2012, v.3 no.1, pp.21-24
https://doi.org/10.5478/MSL.2012.3.1.021
Su Hyeon Lee (Korea Institute of Science and Technology)
Lee Dong-Hyoung (Korea Institute of Science and Technolog)
Lee Jeongae (Korea Institute of Science and Technology)
Lee Won-Yong (Yonsei University)
Chung Bong Chul (Korea Institute of Science and Technology)
Choi Man Ho (Korea Institute of Science and Technolog)
  • Downloaded
  • Viewed

Abstract

5α-Dihydrotestosterone (DHT) is the primary active metabolite of testosterone, catalyzed by 5α-reductase (5αR) in the skin, prostate, and liver. In this study, the 5αR activity in rat liver S9 fraction in the presence of a NADPH-generating system was evaluated and compared by gas chromatography-mass spectrometry (GC-MS)-based in vitro assays. Testosterone and a 5αR inhibitor, finasteride, were added to the S9 fractions and incubated at 37oC for 1 h. Both testosterone and DHT were quantitatively measured and compared with two different GC-MS-based steroid profiling techniques. DHT was not detected by conventional GC-MS analysis in the absence of finasteride when the concentration of testosterone in the S9 fraction was less than 0.2 μM, whereas the isotope-dilution GC-MS (GC-IDMS) system was able to evaluate the 5αR activity. Because the S9 fraction contains more reactive enzymes and is easier to collect from tissues compared with a microsomal solution, the combination of the S9 fraction and GC-IDMS technique may be a promising assay for evaluating the 5αR activity in large-scale clinical studies.

keywords
5α-Reductase, Testosterone, Dihydrotestosterone, Isotope-dilution, GC-MS, Liver microsome


Reference

1

Nuck, B. A. (1987). . J. Invest. Dermatol, 89, 209211-.

2

Starka, L. (1993). . Endocr. Regul, 27, 43-.

3

Choi, M. H. (2001). . J. Invest. Dermatol, 116, 57-.

4

Glrmley, G. J. (1990). . J. Clin. Endocriol. Metabol, 70, 1136-.

5

Lee, S. H. (2007). . Anal. Chem, 79, 6102-.

6

Falk, R. T. (2008). . Cancer Epidemiol. Biomarkers Prev, 17, 3411-.

7

Taieb, J. (2003). . Clin. Chem, 49, 1381-.

8

Wang, C. (2004). . J. Clin. Endocrinol. Metab, 89, 2936-.

9

Payne, A. H. (2004). . Endocr. Rev, 25, 947-.

10

Choi, M. H. (2002). . Clin. Chim. Acta, 320, 95-.

11

Cawood, M. L. (2005). . Clin. Chem, 51, 1472-.

12

Tai, S. S. (2007). . Anal. Bioanal. Chem, 388, 1087-.

13

Ha, Y. W. (2009). . J. Chromatogr. B, 877, 4125-.

14

Su Hyeon Lee. (2010). Isotope-Dilution Mass Spectrometry for Quantification of Urinary Active Androgens Separated by Gas Chromatography. Mass Spectrometry Letters, 1(1), 29-32. http://dx.doi.org/10.5478/MSL.2010.1.1.029.

15

Rijk, J. C. (2008). . Anal. Bioanal. Chem, 392, 417-.

16

Moon, J.-Y. (2009). . J. Am. Soc. Mass Spectrom, 20, 1626-.

17

Okuda, K. (2011). . Drug Metab. Dispos, 39, 1696-.

18

Brian, C. (2006). . Nat. Protoc, 1, 1872-.

19

Chalbot, S. (2005). . Drug Metab. Dispos, 33, 563-.

Submission Date
2012-03-01
Revised Date
2012-03-12
Accepted Date
2012-03-12
상단으로 이동

Mass Spectrometry Letters