Article Detail

Home > Article Detail
  • P-ISSN 2233-4203
  • E-ISSN 2093-8950

MALDI-TOF Analysis of Binding between DNA and Peptides Containing Lysine and Tryptophan

Mass Spectrometry Letters / Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2015, v.6 no.3, pp.80-84
https://doi.org/10.5478/MSL.2015.6.3.80
Lee Seonghyun (Sogang University)
Choe Sojeong (Sogang University)
Oh Yeeu (Sogang University)
Jo Kyubong (Sogang University)
  • Downloaded
  • Viewed

Abstract

Here, we demonstrate the use of MALDI-TOF as a fast and simple analytical approach to evaluate the DNA-binding capability of various peptides. Specifically, by varying the amino acid sequence of the peptides consisting of lysine (K) and tryp- tophan (W), we identified peptides with strong DNA-binding capabilities using MALDI-TOF. Mass spectrometric analysis reveals an interesting novel finding that lysine residues show sequence selective preference, which used to be considered as mediator of electrostatic interactions with DNA phosphate backbones. Moreover, tryptophan residues show higher affinity to DNA than lysine residues. Since there are numerous possible combinations to make peptide oligomers, it is valuable to introduce a simple and reliable analytical approach in order to quickly identify DNA-binding peptides.

keywords
MALDI-TOF, DNA Binding Peptide, Lysine and Tryptophan-containing Peptide, Non-covalent DNA-Peptide Binding


Reference

1

Helene, C.. (1971). . Nature, 234, 120-.

2

Gidoni, D.. (1984). . Nature, 312, 409-.

3

Oneil, K. T.. (1990). . Science, 249, 774-.

4

Hanson, C. L.. (2004). . J. Biol. Chem, 279, 24907-.

5

Galas, D. J.. (1978). . Nucleic Acids Res, 5, 3157-.

6

Garner, M. M.. (1981). . Nucleic Acids Res, 9, 3047-.

7

Terrier, P.. (2007). . J. Am. Soc. Mass Spectrom, 18, 346-.

8

Park, S.. (2011). . Analyst, 136, 3739-.

9

Madler, S.. (2013). . Top. Curr. Chem, 331, 1-.

10

Juhasz, P.. (1994). . Proc. Natl. Acad. Sci. U. S. A, 91, 4333-.

11

Terrier, P.. (2007). . J. Am. Soc. Mass Spectrom, 18, 1977-.

12

Kim, Y.. (2011). . Chem. Comm, 47, 6248-.

13

Livnah, O.. (1993). . Proc. Natl. Acad. Sci. U. S. A, 90, 5076-.

14

Firczuk, M.. (2011). . Nucleic Acids Res, 39, 744-.

15

Montenay, T.. (1968). . Nature, 217, 844-.

16

Helene, C.. (1972). . Febs Lett, 26, 6-.

17

Toulme, J. J.. (1974). . Proc. Natl. Acad. Sci. U. S. A, 71, 3185-.

18

Murade, C. U.. (2011). . Chemphyschem, 12, 2545-.

19

Brun, F.. (1975). . Biochemistry, 14, 558-.

20

Collier, D. A.. (1991). . J. Am. Chem. Soc, 113, 1457-.

21

Dimicoli, J. L.. (1974). . Biochemistry, 13, 724-.

22

Shapiro, J. T.. (1969). . Biochemistry, 8, 3219-.

23

Helene, C.. (1971). . Biochemistry, 10, 3802-.

24

Ballin, J. D.. (2010). . Biochemistry, 49, 2018-.

25

Mascotti, D. P.. (1990). . Proc. Natl. Acad. Sci. U. S. A, 87, 3142-.

26

Maurizot, J. C.. (1978). . Biochemistry, 17, 2096-.

27

Mascotti, D. P.. (1993). . Biochemistry, 32, 10568-.

28

Mascotti, D. P.. (1992). . Biochemistry, 31, 8932-.

Submission Date
2015-08-25
Revised Date
2015-09-15
Accepted Date
2015-09-15
상단으로 이동

Mass Spectrometry Letters