Article Detail

Home > Article Detail
  • P-ISSN 2233-4203
  • E-ISSN 2093-8950

Applications of Stochastic Process in the Quadrupole Ion traps

Mass Spectrometry Letters / Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2015, v.6 no.4, pp.91-98
https://doi.org/10.5478/MSL.2015.6.4.91
Chaharborj Sarkhosh Seddighi (Universiti Putra Malaysia)
Kiai Seyyed Mahmod Sadat (Plasma Physics and Nuclear Fusion Resea)
Arifina Norihan Md (Universiti Putra Malaysia)
Gheisari Yousof (Islamic Azad University)
  • Downloaded
  • Viewed

Abstract

The Brownian motion or Wiener process, as the physical model of the stochastic procedure, is observed as an indexed collection random variables. Stochastic procedure are quite influential on the confinement potential fluctuation in the quadrupole ion trap (QIT). Such effect is investigated for a high fractional mass resolution spectrometry. A stochastic procedure like the Wiener or Brownian processes are potentially used in quadrupole ion traps (QIT). Issue examined are the sta-bility diagrams for noise coefficient, as well as ion trajectories in real time for noise coefficient, . The simulated results have been obtained with a high precision for the resolution of trapped ions. Furthermore, in the lower mass range, the impulse voltage including the stochastic potential can be considered quite suitable for the quadrupole ion trap with a higher mass resolution.

keywords
Stochastic process, Quadrupole ion trap, Ion motion, Fractional mass resolution.


Reference

1

Blaum, K.. (2006). . Phys. Rep, 425, 1-.

2

Douglas, D. J.. (2005). . Mass Spectrom. Rev, 24, 1-.

3

Kingdon, K . H.. (1923). . Phys. Rev, 21, 408-.

4

Hu, Q. Z.. (2005). . J. Mass Spectrom, 40, 430-.

5

Seddighi Chaharborj, S.. (2010). . J. Mass Spectrom, 45, 1111-.

6

Paul, W.. (1953). . Naturforsch, 8, 448-.

7

Kashanian, F.. (2011). . Int. J. Mass Spectrom, 303, 199-.

8

Sadat Kiai, S.. (2011). . Anal. At. Spectrom, 26, 2247-.

9

Seddighi Chaharborj, S.. (2012). . Int. J. Mass Spectrom, 39, 63-.

10

Itano, W. M.. (1990). . J. Phys. Rev. A, 41, 2295-.

11

Rafac, R. J.. (2000). . Phys. Rev. Lett, 85, 2462-.

12

Kielpinski, D.. (2001). . Science, 291, 1013-.

13

Beaty, E. C.. (1987). . J. Appl. Phys, 61, 2118-.

14

Seddighi Chaharborj, S.. (2012). . Int. J. Mod. Phys, 9, 373-.

15

Virginia, R. Y.. (2000). . Insur. Math. Econ, 27, 1-.

16

Denis, P.. (2007). . IEEE Trans. Commun, 55, 1607-.

17

Lorenzo, G.. (2006). . IEEE Signal Proc. Let, 13, 608-.

18

Seddighi Chaharborj, S.. (2012). . Int. J. Mass Spectrom, 309, 63-.

19

Seddighi Chaharborj, S.. (2010). . J. Mass Spectrom, 45, 1111-.

20

March, R. E.. (2000). . J. Mass Spectrom, 200, 285-.

21

Seddighi Chaharborj, S.. (2012). . Rapid Commun. Mass Spectrom, 26, 1481-.

Submission Date
2014-12-28
Revised Date
2015-03-20
Accepted Date
2015-05-29
상단으로 이동

Mass Spectrometry Letters