Article Detail

Home > Article Detail
  • P-ISSN 2233-4203
  • E-ISSN 2093-8950

Recent Developments in Nuclear Forensic and Nuclear Safeguards Analysis Using Mass Spectrometry

Mass Spectrometry Letters / Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2016, v.7 no.2, pp.31-40
https://doi.org/10.5478/MSL.2016.7.2.31
Song Kyuseok (Korea Atomic Energy Research Institute)
Park Jong-Ho (Korea Atomic Energy Research Institute)
Lee Chi-Gyu (Korea Atomic Energy Research Institute)
Han Sun-Ho (Korea Atomic Energy Research Institute)
  • Downloaded
  • Viewed

Abstract

The analysis of nuclear materials and environmental samples is an important issue in nuclear safeguards and nuclear forensics. An analysis technique for safeguard samples has been developed for the detection of undeclared nuclear activities and verification of declared nuclear activities, while nuclear forensics has been developed to trace the origins and intended use of illicitly trafficked nuclear or radioactive materials. In these two analytical techniques, mass spectrometry has played an important role in determining the isotope ratio of various nuclides, contents of trace elements, and production dates. These two techniques typically use similar analytical instruments, but the analytical procedure and the interpretation of analytical results differ depending on the analytical purpose. The isotopic ratio of the samples is considered the most important result in an environmental sample analysis, while age dating and impurity analysis may also be important for nuclear forensics. In this review, important aspects of these techniques are compared and the role of mass spectrometry, along with recent progress in related technologies, are discussed.

keywords
Safeguard sample analysis, nuclear forensic analysis, mass spectrometry


Reference

2

IAEA bulletin, 1/1992.

3

Moyland, S. von. The IAEA’s program ‘93+2’, Verification matters No 10.

4

Donohue, D.. (1998). . J. Alloys Comp, 271, 11-.

5

ITDB 2015 Fact sheet, Illicit Trafficking Data Base.

6

Mayer, K.. (2005). . Analyst, 130, 433-.

7

Stanley, F.E.. (2013). . J. Radioanal. Nucl. Chem, 295, 1385-.

8

Fedchenko, V.. (2014). . Strategic Analysis, 38, 230-.

9

Chandramouleeswaran, S.. (2014). . J. Anal. Bioanal Techniques, S6, 5-.

10

Boulyga, S.. (2015). . J. Anal. At. Spectrom, 30, 1469-.

11

Aggarwal, S. K.. (2016). . Anal. Meth, 8, 942-.

12

Carchon, R.. (2007). . Nucl. Instrum. Meth. Phys. Res. A, 579, 380-.

13

Chapter 3. Technology for Detection of Emissions, Environmental Monitoring for Nuclear Safeguards, U.S. Congress, Office of Technology Assessment, OTA-BPISS-168.

14

Vogt, S.. IAEA-SM-367/10/06.

15

Kim, C. S.. (2000). . J. Anal. At. Spectrom, 15, 247-.

16

Takahashi, M.. (2002). . J. Nucl. Sci. Techno, Supl. 3, 568-.

17

Lee, M. H.. (2011). . Talanta, 86, 99-.

18

Amstrong, C. R.. (2014). . J. Radioanal. Nucl. Chem, 300, 859-.

19

McCormick. (1992). . Appl. Radiat. Isotopes, 43, 271-.

20

Pereira de Oliveira, O.. (2005). . Int. J. Mass Spectrom, 246, 35-.

21

Park. J. H.. (2013). . Asian J. Chem, 25, 7016-.

22

Saito-Kokubu, Y.. (2012). . Int. J. Mass Spectrom, 310, 52-.

23

Park, J.-H.. (2015). . J. Radioanal. Nucl. Chem, 303, 1297-.

24

Lee, C. G.. (2015). . Talanta, 141, 92-.

25

Magara, M.. (2000). . Appl. Rad. Isotope, 53, 87-.

26

Farmer III, O. T.. (2008). . J. Radioanal. Nucl. Chem, 276, 489-.

27

Godoy, M. L. D. P.. (2007). . J. Environ. Raioactiv, 97, 124-.

28

Szeles, E.. (2010). . J. Anal. At. Spectrom, 25, 1014-.

29

임상호. (2015). Validation of Bulk Analysis with Simulated Swipe Samples Containing Ultra-Trace Amounts of Uranium and Plutonium Using MC-ICP-MS. Mass Spectrometry Letters, 6(3), 75-79. http://dx.doi.org/10.5478/MSL.2015.6.3.75.

30

Pestana, R. C. B.. (2013). . J. Radioanal. Nucl. Chem, 298, 621-.

31

Mitroshkov, A. V.. (2015). . J. Anal. Atom. Spectrom, 30, 487-.

32

Usuda, S.. (2010). . J. Nucl. Radiochem. Sci, 11, A5-.

33

Song, K.. (2016). . J. Radioanal. Nucl. Chem, 307, 1847-.

34

Donohue, D.. IAEA-SM-367/10/07.

35

Donohue, D.. IAEA-CN-184/159.

36

Esaka, F.. (2004). . J. Nucl. Sci. Tech, 41, 1027-.

37

Wang, F.. (2013). . J. Radioanal. Nucl. Chem, 298, 1865-.

38

Kurosaki, H.. (2002). . J. Nucl. Sci. Tech, Supp. 3, 493-.

39

Stezer, O.. (2004). . Nucl. Instrum. Meth. Phys. Res. A, 525, 582-.

40

Park, Y. J.. (2006). . Nucl. Instrum. Meth. Phys. Res. A, 557, 657-.

41

Lee, M. H.. (2011). . Radiation Measurements, 46, 409-.

42

Lee. C. G.. (2007). . J. Radioanal. Nucl. Chem, 272, 299-.

43

Lee, C. G.. (2011). . Talanta, 85, 644-.

44

Chen. Y.. (2013). . Rad. Meas, 50, 43-.

45

Esaka, F.. (2015). . Anal. Chem, 87, 3107-.

46

Sujin Park. (2011). Determination of the Uranium Backgrounds in Lexan Films for Single Particle Analysis using FT-TIMS technique. Mass Spectrometry Letters, 2(2), 57-60. http://dx.doi.org/10.5478/MSL.2011.2.2.057.

47

Pestana, R.C.B.. (2013). (-). Int. Nucl. Atlantic Conf-INSA 2013.

48

Kraiem, M.. (2011). . Anal. Chim. Acta, 688, 1-.

49

Kariem, M.. (2012). . Anal. Chim. Acta, 748, 37-.

50

박종호. (2013). Isotopic Analysis of NUSIMEP-6 Uranium Particles using SEM-TIMS. Mass Spectrometry Letters, 4(3), 51-54. http://dx.doi.org/10.5478/MSL.2013.4.3.51.

51

Tamborini, G.. (1998). . Spectrochim. Acta B, 53, 1289-.

52

Esaka, F.. (2007). . Talanta, 71, 1011-.

53

Esaka, F.. (2008). . Appl. Surf. Sci, 255, 1512-.

54

Hedberg, P. M. L.. (2011). . J. Anal. Atom. Spectrom, 26, 406-.

55

Esaka, F.. (2012). . Anal. Chim. Acta, 721, 122-.

56

Esaka, F.. (2016). . Anal. Methods, 8, 1543-.

57

Shinonaga, T.. (2008). . Spectrochim. Acta Part B, 63, 1324-.

58

Ranebo, Y.. (2009). . J. Anal. At. Spectrom, 24, 277-.

59

Peres, P.. (2013). . Surf. Interface Anal, 45, 561-.

60

Zhang, X. Z.. (2007). . Spectrochim. Acta Part B, 62, 1130-.

61

Esaka, F.. (2013). . J. Anal. At. Spectrom, 28, 682-.

62

Varga, Z.. (2008). . Analytica Chimica Acta, 625, 1-.

63

Kappel, S.. (2013). . Anal. Bioanal. Chem, 405, 2943-.

64

Pointurier, F.. (2011). . Anal. Chem, 83, 7841-.

65

Garcia, C. C.. (2008). . J. Anal. At. Spectrom, 23, 470-.

66

IAEA Nuclear Security Series No.2-G (Rev. 1), Nuclear Forensics Support, Technical guidance reference manual.

67

Kristo, M. J.. (2013). . J. Nucl. Instrum. Meth. Phys. Res. B, 294, 656-.

68

Martinell, R. E.. (2009). . J. Radioanal. Nucl. Chem, 282, 343-.

69

Miyamoto, Y.. (2015). . Anal. Bioanal. Chem, 407, 7165-.

70

Balsley, S. D.. (-). IAEA symposium on International Safeguards 2010.

71

Jeon, Y. S.. (2014). . Asian J. Chem, 26, 4052-.

72

Wallenius, M.. (2006). . Forensics Sci. Int, 156, 55-.

73

Büger, S.. (2007). . J. Alloys and Comp, 444, 660-.

74

Lee, C. G.. (2015). . Talanta, 141, 92-.

75

Wallenius, M.. (2000). . J. Radioanal. Nucl. Chem, 246, 317-.

76

Wallenius, M.. (2000). . Fresenius. J. Anal. Chem, 366, 234-.

77

Quemet, A.. (2014). . Int. J. Mass. Spectom, 374, 2-.

78

Mironov, V. P.. (2005). . Radiochim. Acta, 93, 781-.

79

Varga, Z.. (2009). . Anal. Chem, 81, 8327-.

80

Varga, Z.. (2009). . Appl. Rad. Isotopes, 67, 516-.

81

Krajko, J.. (2014). . Talanta, 129, 499-.

82

Keegan, Z. E.. (2014). . Forensics Science International, 240, 111-.

83

Varga, Z.. (2010). . Talanta, 80, 1744-.

84

Stefanka, Z.. (2008). . J. Anal. At. Spectrom, 23, 1030-.

85

Marin, R. C.. (2013). . J. Radioanal. Nucl. Chem, 295, 99-.

86

Potter, E. -K.. (2005). . Int. J. Mass Spectrom, 240, 27-.

87

Nygren, U.. (2007). . J. Radioanal. Nucl. Chem, 272, 45-.

88

Gaffney, A. M.. (2015). . J. Radioanal. Nucl. Chem, 307, 2055-.

89

Varga, Z.. (2016). . J. Radioanal. Nucl. Chem, 307, 1919-.

90

Han, S. H.. (2013). . J. Anal. At. Spectrom, 28, 1919-.

91

Krajko, J.. (2016). . J. Radioanal. Nucl. Chem, , -. http://dx.doi.org/10.10007/s10967-016-4733-5.

92

Betti, M.. (1999). . Anal. Chem, 71, 2616-.

93

Tamborini, G.. (2000). . Microchim. Acta, 132, 411-.

94

Tamborini, G.. (2002). . Anal. Chem, 74, 6098-.

95

Tamborini, G.. (2004). . Microchim. Acta, 145, 237-.

96

Faure, A. -L.. (2014). . J. Anal. At. Spectrom, 29, 145-.

97

Fahey, A. J.. (2010). . J. Radioanal. Nucl. Chem, 284, 575-.

98

Hedberg, P. M. L.. (2015). . J. Anal. At. Spectrom, 30, 2516-.

99

Pibida, L.. (2004). . Appl. Rad. Isotopes, 60, 567-.

100

Noto, T.. (2016). . J. Nucl. Sci. Tech, 53, 289-.

101

Ghosh, P.. (2003). . Int. J. Mass Spectrom, 228, 1-.

102

Ramirez, F.. (2011). . Coatal and Shelf Science, 92, 217-.

Submission Date
2016-05-30
Revised Date
2016-06-20
Accepted Date
2016-06-22
상단으로 이동

Mass Spectrometry Letters