Article Detail

Home > Article Detail
  • P-ISSN 2233-4203
  • E-ISSN 2093-8950

Characterization of Preclinical in Vitro and in Vivo Pharmacokinetic Properties of KPLA-012, a Benzopyranyl 1,2,3-Triazole Compound, with Anti-Angiogenetic and Anti-Tumor Progressive Effects

Mass Spectrometry Letters / Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2018, v.9 no.2, pp.61-65
https://doi.org/10.5478/MSL.2018.9.2.61
Nam So Jeong (Kyungpook National University)
Lee Taeho (Kyungpook National University)
Choi Min-Koo (Dankook University)
Song Im-Sook (Kyungpook National University)
  • Downloaded
  • Viewed

Abstract

KPLA-012, a benzopyranyl 1,2,3-triazole compound, is considered a potent HIF-1α inhibitor based on the chemical library screening, and is known to exhibit anti-angiogenetic and anti-tumor progressive effects. The aim of this study was to investigate the pharmacokinetic properties of KPLA-012 in ICR mice and to investigate in vitro characteristics including the intestinal absorption, distribution, metabolism, and excretion of KPLA-012. The oral bioavailability of KPLA-012 was 33.3% in mice. The pharmacokinetics of KPLA-012 changed in a metabolism-dependent manner, which was evident by the low recovery of parent KPLA-012 from urine and feces and metabolic instability in the liver microsomes. However, KPLA-012 exhibited moderate permeability in Caco-2 cells (3.1 × 10 -6 cm/s) and the metabolic stability increased in humans compared to that in mice (% remaining after 1 h; 47.4% in humans vs 14.8% in mice). Overall, the results suggest that KPLA-012 might have more effec- tive pharmacokinetic properties in humans than in mice although further studies on its metabolism are necessary.

keywords
KPLA-012, benzopyranyl 1, 2, 3-triazole compound, pharmacokinetics, metabolic instability


Reference

1

Park, K.. (2017). . Oncotarget, 8, 7801-.

2

Semenza, G. L.. (2014). . Annu. Rev. Pathol., 9, 47-. http://dx.doi.org/10.1146/annurev-pathol-012513-104720.

3

Rey, S.. (2010). . Cardiovasc. Res., 86, 236-. http://dx.doi.org/10.1093/cvr/cvq045.

4

Semenza, G. L.. (2012). . Adv. Exp. Med. Biol., 758, 1-.

5

Kim, K. H.. (2013). . Biochem. Biophys. Res. Commun., 441, 399-. http://dx.doi.org/10.1016/j.bbrc.2013.10.075.

6

Kim, J. H.. (2014). . Oncogenesis, 3, e101-. http://dx.doi.org/10.1038/oncsis.2014.15.

7

Ke, Q.. (2006). . Mol. Pharmacol., 70, 1469-. http://dx.doi.org/10.1124/mol.106.027029.

8

Li Chen. (2009). Hypoxia and angiogenesis: regulation of hypoxia-inducible factors via novel binding factors. Experimental and Molecular Medicine, 41(12), 849-857.

9

Kim, M. J.. (2018). . Int. J. Mol. Sci., 19, 1120-. http://dx.doi.org/10.3390/ijms19041120.

10

Choi, M. K.. (2014). . Biopharm. Drug Dispos., 35, 183-. http://dx.doi.org/10.1002/bdd.1883.

11

Choi, Y. A.. (2015). . Biol. Pharm. Bull., 38, 208-. http://dx.doi.org/10.1248/bpb.b14-00508.

12

송임숙. (2017). Comparison of Gastrointestinal Permeability of Caffeine, Propranolol, Atenolol, Ofloxacin, and Quinidine Measured Using Ussing Chamber System and Caco-2 Cell Monolayer. Mass Spectrometry Letters, 8(2), 34-38. http://dx.doi.org/10.5478/MSL.2017.8.2.34.

13

Choi, M. K.. (2017). . Mar. Drugs, 15, 279-. http://dx.doi.org/10.3390/md15090279.

14

Huang, Z.. (2015). . Drug Des. Devel. Ther., 9, 4319-.

15

Levin, V. A.. (1980). . J. Med. Chem., 23, 682-. http://dx.doi.org/10.1021/jm00180a022.

16

Stewart, B. H.. (1995). . Pharm. Res., 12, 693-. http://dx.doi.org/10.1023/A:1016207525186.

Submission Date
2018-06-01
Revised Date
2018-06-19
Accepted Date
2018-06-19
상단으로 이동

Mass Spectrometry Letters