Article Detail

Home > Article Detail
  • P-ISSN 2233-4203
  • E-ISSN 2093-8950

Improved Calibration for the Analysis of Emerging Contaminants in Wastewater Using Ultra High Performance Liquid Chromatography and Time-of-Flight Mass Spectrometry

Mass Spectrometry Letters / Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2018, v.9 no.3, pp.77-80
https://doi.org/10.5478/MSL.2018.9.3.77
Pellinen Jukka (University of Helsinki)
Lepistö Riikka-Juulia (University of Helsinki)
Savolainen Santeri (University of Helsinki)
  • Downloaded
  • Viewed

Abstract

The focus of this paper is to present techniques to overcome certain difficulties in quantitative analysis with a time- of-flight mass spectrometer (TOF-MS). The method is based on conventional solid-phase extraction, followed by reversed- phase ultra high performance liquid chromatography of the extract, and mass spectrometric analysis. The target compounds included atenolol, atrazine, caffeine, carbamazepine, diclofenac, estrone, ibuprofen, naproxen, simazine, sucralose, sulfamethox- azole, and triclosan. The matrix effects caused by high concentrations of organic compounds in wastewater are especially signif- icant in electrospray ionization mass spectroscopy. Internal-standard calibration with isotopically labeled standards corrects the results for many matrix effects, but some peculiarities were observed. The problems encountered in quantitation of carbamaze- pine and triclosan, due to nonlinear calibration were solved by changing the internal standard and using a narrower mass win- dow. With simazine, the use of a quadratic calibration curve was the best solution.

keywords
emerging contaminant, time-of-flight mass spectrometry, method development, municipal wastewater, internal standard calibration


Reference

1

Ferrer, I.. (2003). . Trends Anal. Chem., 22, 750-. http://dx.doi.org/10.1016/S0165-9936(03)01013-6.

2

Petrovic, M.. (2003). . Trends Anal. Chem., 22, 685-. http://dx.doi.org/10.1016/S0165-9936(03)01105-1.

3

Fatta, D.. (2007). . Trends Anal. Chem., 26, 515-. http://dx.doi.org/10.1016/j.trac.2007.02.001.

4

Petrie, B.. (2015). . Water Res., 72, 3-. http://dx.doi.org/10.1016/j.watres.2014.08.053.

5

Lindholm, P. C.. (2014). . BioResources, 9, 3688-.

6

Rodriguez-Chueca, J.. (2018). . J. Hazardous Mater., , -. http://dx.doi.org/10.1016/j.jhazmat.2018.04.044.

7

Petrie, B.. (2016). . J. Chromatogr. A, 1431, 64-. http://dx.doi.org/10.1016/j.chroma.2015.12.036.

8

Gomez, M. J.. (2010). . J. Chromatogr. A, 1217, 7038-. http://dx.doi.org/10.1016/j.chroma.2010.08.070.

9

Nurmi, J.. (2011). . J. Chromatogr. A, 1218, 6712-. http://dx.doi.org/10.1016/j.chroma.2011.07.071.

10

Berg, T.. (2011). . J. Chromatogr. A, 1218, 9366-. http://dx.doi.org/10.1016/j.chroma.2011.10.081.

11

Meng, C. -K.. Agilent Application Note 5989-5319EN.

12

Al-Qaim, F. F.. (2014). . J. Braz. Chem. Soc., 25, 271-.

Submission Date
2018-06-28
Revised Date
2018-08-02
Accepted Date
2018-08-02
상단으로 이동

Mass Spectrometry Letters