SOME RESULTS CONCERNING (?; ')-DERIVATIONS ON PRIME RINGS
Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2003, v.10 no.4, pp.207-215
Park, Kyoo-Hong
Jung Yong-Soo
Park,,
K.
, &
Jung,
Y.
(2003). SOME RESULTS CONCERNING (?; ')-DERIVATIONS ON PRIME RINGS. Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, 10(4), 207-215.
Abstract
Let R be a prime ring with characteristic different from two and let <TEX>$\theta,\varphi,\sigma,\tau$</TEX> be the automorphisms of R. Let d : <TEX>$R{\rightarrow}R$</TEX> be a nonzero (<TEX>$\theta,\varphi$</TEX>)-derivation. We prove the following results: (i) if <TEX>$a{\in}R$</TEX> and [d(R), a]<TEX>$_{{\theta}o{\sigma},{\varphi}o{\tau}}$</TEX>=0, then <TEX>$\sigma(a)\;+\;\tau(a)\;\in\;Z$</TEX>, the center of R, (ii) if <TEX>$d([R,a]_{\sigma,\;\tau)\;=\;0,\;then\;\sigma(a)\;+\;\tau(a)\;\in\;Z$</TEX>, (iii) if <TEX>$[ad(x),\;x]_{\sigma,\;\tau}\;=\;0;for\;all\;x\;\in\;RE$</TEX>, then a = 0 or R is commutative.
- keywords
-
prime ring,
(<,
TEX>,
$\theta,
\,
\varphi$<,
/TEX>,
)-derivation,
(<,
TEX>,
$\sigma,
\,
\tau$<,
/TEX>,
)-Lie ideal