바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

SOME RESULTS CONCERNING (?; ')-DERIVATIONS ON PRIME RINGS

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2003, v.10 no.4, pp.207-215
Park, Kyoo-Hong
Jung Yong-Soo

Abstract

Let R be a prime ring with characteristic different from two and let <TEX>$\theta,\varphi,\sigma,\tau$</TEX> be the automorphisms of R. Let d : <TEX>$R{\rightarrow}R$</TEX> be a nonzero (<TEX>$\theta,\varphi$</TEX>)-derivation. We prove the following results: (i) if <TEX>$a{\in}R$</TEX> and [d(R), a]<TEX>$_{{\theta}o{\sigma},{\varphi}o{\tau}}$</TEX>=0, then <TEX>$\sigma(a)\;+\;\tau(a)\;\in\;Z$</TEX>, the center of R, (ii) if <TEX>$d([R,a]_{\sigma,\;\tau)\;=\;0,\;then\;\sigma(a)\;+\;\tau(a)\;\in\;Z$</TEX>, (iii) if <TEX>$[ad(x),\;x]_{\sigma,\;\tau}\;=\;0;for\;all\;x\;\in\;RE$</TEX>, then a = 0 or R is commutative.

keywords
prime ring, (&lt, TEX&gt, $\theta, \, \varphi$&lt, /TEX&gt, )-derivation, (&lt, TEX&gt, $\sigma, \, \tau$&lt, /TEX&gt, )-Lie ideal

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics