ISSN : 1226-0657
In this note we use a generalization of coincidence point(a property which was defined by [1] in symmetric spaces) to prove common fixed point theorem on S-metric spaces for weakly compatible maps. Also the results are used to achieve the solution of an integral equation and the bounded solution of a functional equation in dynamic programming.
The purpose of this paper is to introduce a new type of a cubic functional equation and then investigate its stability problems in a convex modular space with a generalized ∆a-condition.
In this paper, we exploit some known theta function identities involving two parameters ��k,n and ��′k,n for the theta function �� to find about 54 new values of the Ramanujan's cubic continued fraction.
We study translation surfaces in the Euclidean 3-space ��3 and the Gauss map N with respect to the so-called Cheng-Yau operator ☐. As a result, we prove that the only translation surfaces with Gauss map N satisfying ☐N = AN for some 3 × 3 matrix A are the flat ones. We also show that the only translation surfaces with Gauss map N satisfying ☐N = AN for some nonzero 3 × 3 matrix A are the cylindrical surfaces.
Let M be a real hypersurface in a complex space form Mn(c), c ≠ 0. In this paper we prove that if the structure tensor field is Codazzi type, then M is a Hopf hypersurface. We characterize such Hopf hypersurfaces of Mn(c).
In this paper, we introduce a new three-step iterative scheme for three finite families of nonexpansive mappings in hyperbolic spaces. And, we establish a strong convergence and a ∆-convergence of a given iterative scheme to a common fixed point for three finite families of nonexpansive mappings in hyperbolic spaces. Our results generalize and unify the several main results of [1, 4, 5, 9].
We define the constant ratio curves in the isotropic plane and investigate their deflection properties.