바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

APPROXIMATELY QUADRATIC DERIVATIONS AND GENERALIZED HOMOMORPHISMS

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2010, v.17 no.2, pp.115-130
Park, Kyoo-Hong
Jung, Yong-Soo

Abstract

Let <TEX>$\cal{A}$</TEX> be a unital Banach algebra. If f : <TEX>$\cal{A}{\rightarrow}\cal{A}$</TEX> is an approximately quadratic derivation in the sense of Hyers-Ulam-J.M. Rassias, then f : <TEX>$\cal{A}{\rightarrow}\cal{A}$</TEX> is anexactly quadratic derivation. On the other hands, let <TEX>$\cal{A}$</TEX> and <TEX>$\cal{B}$</TEX> be Banach algebras.Any approximately generalized homomorphism f : <TEX>$\cal{A}{\rightarrow}\cal{B}$</TEX> corresponding to Cauchy, Jensen functional equation can be estimated by a generalized homomorphism.

keywords
quadratic derivation, approximate quadratic derivation, stability

Reference

1.

Hyers, D H. (1941). On the Stability of the Linear Functional Equation.. Proceedings of the National Academy of Sciences, 27(4), 222-224. 10.1073/pnas.27.4.222.

2.

Baak, Choonkil;Moslehian, Mohammad Sal. (2007). On the stability of <I>&thgr;</I>-derivations on <I>JB</I>*-triples. Bulletin of the Brazilian Mathematical Society, New Series, 38(1), 115-127. 10.1007/s00574-007-0039-0.

3.

Cholewa. (1984). . Aequationes Mathematicae, 27(1), 76-86. 10.1007/BF02192660.

4.

(2004). . Math. Inequal. & Appl., 7(1), 79-85.

5.

Jung, Y.S.;Chang, I.S.. (2008). On approximately higher ring derivations. Journal of Mathematical Analysis and Applications, 343(2), 636-643. 10.1016/j.jmaa.2008.01.083.

6.

RASSIAS. (1982). . Journal of Functional Analysis, 46(1), 126-130. 10.1016/0022-1236(82)90048-9.

7.

(1995). . Results Math., 27, 368-372.

8.

Rassias, Themistocles M.. (1978). On the Stability of the Linear Mapping in Banach Spaces. Proceedings of the American Mathematical Society, 72(2), 297-300. 10.1090/S0002-9939-1978-0507327-1.

9.

10.

��emrl. (1994). . Integral Equations and Operator Theory, 18(1), 118-122. 10.1007/BF01225216.

11.

Johnson. (1987). . Bulletin of the London Mathematical Society, 19(1), 67-71. 10.1112/blms/19.1.67.

12.

Czerwik. (1992). . Abhandlungen aus dem Mathematischen Seminar der Universit채t Hamburg, 62(1), 59-64. 10.1007/BF02941618.

13.

Gavruta, P.. (1994). A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings. Journal of Mathematical Analysis and Applications, 184(3), 431-436. 10.1006/jmaa.1994.1211.

14.

15.

(2006). . J. Math. & Math. Sci., 2006, 1-8.

16.

Skof. (1983). . Rendiconti del Seminario Matematico e Fisico di Milano, 53(1), 113-129. 10.1007/BF02924890.

17.

18.

HATORI. (1992). . Tokyo Journal of Mathematics, 15(1), 223-229. 10.3836/tjm/1270130262.

19.

20.

(1968). . Proc. Amer. Math. Soc., 126(2), 425-430.

21.

Jung, S.-M.. (1998). On the Hyers-Ulam Stability of the Functional Equations That Have the Quadratic Property. Journal of Mathematical Analysis and Applications, 222(1), 126-137. 10.1006/jmaa.1998.5916.

22.

Jung, Soon-Mo. (1998). Hyers-Ulam-Rassias Stability of Jensen's Equation and Its Application. Proceedings of the American Mathematical Society, 126(11), 3137-3143. 10.1090/S0002-9939-98-04680-2.

23.

24.

25.

Baker, John A.. (1980). The Stability of the Cosine Equation. Proceedings of the American Mathematical Society, 80(3), 411-416. 10.1090/S0002-9939-1980-0580995-3.

26.

Miura, T.;Hirasawa, G.;Takahasi, S.. (2006). A perturbation of ring derivations on Banach algebras. Journal of Mathematical Analysis and Applications, 319(2), 522-530. 10.1016/j.jmaa.2005.06.060.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics