바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

DISCRETE PRESENTATIONS OF THE HOLONOMY GROUP OF A ONE-HOLED TORUS

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2010, v.17 no.4, pp.275-288
Kim, Jpmg-Chan

Abstract

A one-holed torus <TEX>${\Sigma}$</TEX>(l, 1) is a building block of oriented surfaces. In this paper we formulate the matrix presentations of the holonomy group of a one-holed torus <TEX>${\Sigma}$</TEX>(1, 1) by the gluing method. And we present an algorithm for deciding the discreteness of the holonomy group of <TEX>${\Sigma}$</TEX>(1, 1).

keywords
a one-holed torus, hyperbolic structure, holonomy group, discreteness

Reference

1.

2.

3.

(1983). . Enseign. Math., 29, 15-25.

4.

5.

(1965). . Acta Math., 115, 1-16.

6.

7.

Goldman, W. M.. (2003). The modular group action on real SL(2)-characters of a one-holed torus. Geometry & Topology, 7(1), 443-486. 10.2140/gt.2003.7.443.

8.

Kim, Hong-Chan. (2007). DISCRETE CONDITIONS FOR THE HOLONOMY GROUP OF A PAIR OF PANTS. Journal of the Korean Mathematical Society, 44(3), 615-626. 10.4134/JKMS.2007.44.3.615.

9.

Wolpert, Scott. (1985). On the Weil-Petersson Geometry of the Moduli Space of Curves. American Journal of Mathematics, 107(4), 969-997. 10.2307/2374363.

10.

11.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics