ISSN : 1226-0657
A one-holed torus <TEX>${\Sigma}$</TEX>(l, 1) is a building block of oriented surfaces. In this paper we formulate the matrix presentations of the holonomy group of a one-holed torus <TEX>${\Sigma}$</TEX>(1, 1) by the gluing method. And we present an algorithm for deciding the discreteness of the holonomy group of <TEX>${\Sigma}$</TEX>(1, 1).
(1983). . Enseign. Math., 29, 15-25.
(1965). . Acta Math., 115, 1-16.
Goldman, W. M.. (2003). The modular group action on real SL(2)-characters of a one-holed torus. Geometry & Topology, 7(1), 443-486. 10.2140/gt.2003.7.443.
Kim, Hong-Chan. (2007). DISCRETE CONDITIONS FOR THE HOLONOMY GROUP OF A PAIR OF PANTS. Journal of the Korean Mathematical Society, 44(3), 615-626. 10.4134/JKMS.2007.44.3.615.
Wolpert, Scott. (1985). On the Weil-Petersson Geometry of the Moduli Space of Curves. American Journal of Mathematics, 107(4), 969-997. 10.2307/2374363.