ISSN : 1226-0657
We provide a new semilocal convergence analysis of the Gauss-Newton method (GNM) for solving nonlinear equation in the Euclidean space. Using our new idea of recurrent functions, and a combination of center-Lipschitz, Lipschitz conditions, we provide under the same or weaker hypotheses than before [7]-[13], a tighter convergence analysis. The results can be extented in case outer or generalized inverses are used. Numerical examples are also provided to show that our results apply, where others fail [7]-[13].
H占�u占�ler. (1986). . Numerische Mathematik, 48(1), 119-125. 10.1007/BF01389446.
Hu, N.;Shen, W.;Li, C.. (2008). Kantorovich's type theorems for systems of equations with constant rank derivatives. Journal of Computational and Applied Mathematics, 219(1), 110-122. 10.1016/j.cam.2007.07.006.
Penrose. (1955). . Mathematical Proceedings of the Cambridge Philosophical Society, 51(03), 406-413. 10.1017/S0305004100030401.
Nashed, M. Z.;Chen, X.. (1993). Convergence of Newton-like methods for singular operator equations using outer inverses. Numerische Mathematik, 66(2), 235-257. 10.1007/BF01385696.
Deuflhard, P.;Heindl, G.. (1979). Affine Invariant Convergence Theorems for Newton's Method and Extensions to Related Methods. SIAM Journal on Numerical Analysis, 16(1), 1-10. 10.1137/0716001.
(2007). . J. Comput. Math., 25, 231-242.
Argyros, I. K.. (2005). A convergence analysis of Newton-like methods for singular equations using outer or generalized inverses. Applicationes Mathematicae, 32(1), 37-49. 10.4064/am32-1-3.
(2005). . Adv. Nonlinear Var. Inequal., 8, 93-99.
Argyros, I.K.. (2009). On the semilocal convergence of inexact Newton methods in Banach spaces. Journal of Computational and Applied Mathematics, 228(1), 434-443. 10.1016/j.cam.2008.10.005.
Argyros, I.K.. (2004). On the Newton-Kantorovich hypothesis for solving equations. Journal of Computational and Applied Mathematics, 169(2), 315-332. 10.1016/j.cam.2004.01.029.
(1999). . J. Comput. Anal. Appl., 1, 87-104.
BENISRAEL. (1966). . Journal of Mathematical Analysis and Applications, 15(2), 243-252. 10.1016/0022-247X(66)90115-6.