ISSN : 1226-0657
The aim of this paper is to define a new commutativity condition for a pair of self mappings i.e., (DS)-weak commutativity condition, which is weaker that compatibility of mappings in the settings of intuitionistic Menger spaces. We show that a common fixed point theorem can be proved for nonlinear contractive condition in intuitionistic Menger spaces without assuming continuity of any mapping. To prove the result we use (DS)-weak commutativity condition for mappings. We also give examples to validate our results.
(2009). . Commun. Korean Math. Soc., 24(2), 197-214. 10.4134/CKMS.2009.24.2.197.
(2008). . J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 15(2), 135-151.
(1971). . Z. Wahrsch. Verw. Gebiete, 20, 117-128. 10.1007/BF00536289.
(1988). . Glasnik Mat., 23, 203-211.
(1987). . Bull Austral. Math. Soc., 36, 73-88. 10.1017/S0004972700026319.
(1985). . Kobe J. Math., 2, 1-9.
(1999). . Indian J. Pure Appl. Math., 30(4), 419-423.
(1969). . Proc. Amer. Math. Soc., 20, 458-464. 10.1090/S0002-9939-1969-0239559-9.
(2007). . Fasciculi Mathematici, 37, 67-77.
(1963). . Dokl, Akad, Nauk, SSSR, 149, 280-283.
(2003). . Pure Appl. Math., 10(2), 133-144.
(2006). . International Review of Fuzzy Mathematics, 1(2), 147-159.
(1984). . An Univ. Timisoara, Stiinte Math., 22, 83-88.
(1985). . An Univ. Timisoara, Stiinte Math., 23, 61-65.
(2004). . Chaos, Solitons & Fractals, 22, 1039-1046. 10.1016/j.chaos.2004.02.051.
(2004). . Int. J Pure Appl Math., 16, 157-164.
(1998). . Demonstratio Math., 31(3), 537-546.
(1972). . Math. System Theory, 6, 97-102. 10.1007/BF01706080.
(2008). . Italian J. Pure and Appl. Math., 23, 137-146.
(1997). . Bull. Korean Math. Soc., 34, 247-257.
(1995). . Commun. Korean Math. Soc., 10(1), 67-83.
(1991). . Math. Japanica, 36(2), 283-289.
(2008). . Appl. Math. Comput., 195, 86-93. 10.1016/j.amc.2007.04.070.
(1994). . J. Math. Anal. Appl., 188, 436-440. 10.1006/jmaa.1994.1437.
(2007). . Mathematics and Mechanics (English Edition), 28(6), 799-809. 10.1007/s10483-007-0610-z.
(1942). . Proc Nat Acad Sci USA, 28, 535-537. 10.1073/pnas.28.12.535.
(1995). . J. Fuzzy Math., 3, 711-721.
(2008). . Chaos Solitons and Fractals, 37, 675-687. 10.1016/j.chaos.2006.09.048.
(1998). . Indian J. Pure Appl. Math., 29(3), 227-238.
(2007). . Int J. Nonlinear Sci Numer Simulet, 8(1), 11-20.
(1981). . Boll. Un. Mat. Ital., 13(5), 1-11.
(2002). . Fuzzy Sets and Systems, 130, 399-404. 10.1016/S0165-0114(02)00115-X.
(2000). . Fuzzy Sets and Systems, 115, 485-489. 10.1016/S0165-0114(98)00281-4.
(1979). . Publ. Inst. Math. Beograd, 20, 107-112.
(2000). . Chaos, Solitons and Fractals, 11, 2397-2408. 10.1016/S0960-0779(00)00108-9.
(1994). . Fuzzy Sets and Systems, 64, 395-399. 10.1016/0165-0114(94)90162-7.
(1997). . Fuzzy Sets and Systems, 90, 365-368. 10.1016/S0165-0114(96)00207-2.
(1996). . Demonstratio Math., 29, 158-164.
(2004). . Fuzzy Sets and Systems, 144, 411-420. 10.1016/S0165-0114(03)00161-1.
(1998). . Chaos, Solitons and Fractals, 9(3), 517-529. 10.1016/S0960-0779(97)00150-1.
(2000). . J. Indian Acad. Math., 22, 199-210.
(1989). . Math. Japanica, 34(6), 919-923.
(2009). . Chaos, Solitons & Fractals, 42, 2722-2728. 10.1016/j.chaos.2009.03.178.
(1992). . Com. Korean Math. J., 7, 325-339.