바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

SERIES EXPANSIONS OF THE ANALYTIC FEYNMAN INTEGRAL FOR THE FOURIER-TYPE FUNCTIONAL

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2012, v.19 no.2, pp.87-102
https://doi.org/10.7468/jksmeb.2012.19.2.87
Lee, Il-Yong
Chung, Hyun-Soo
Chang, Seung-Jun

Abstract

In this paper, we consider the Fourier-type functionals introduced in [16]. We then establish the analytic Feynman integral for the Fourier-type functionals. Further, we get a series expansion of the analytic Feynman integral for the Fourier-type functional <TEX>$[{\Delta}^kF]^{\^}$</TEX>. We conclude by applying our series expansion to several interesting functionals.

keywords
analytic Feynman integral, Fourier transform, Fourier-type functional, hypergeometric function, Wiener space

Reference

1.

Then Cameron-Storvick operator-valued function space integrals for a class of finite-dimensional functionals.

2.

(1995). Functions with bounded spectrum. Trans. Amer. Math. Soc., 347, 1067-1080. 10.1090/S0002-9947-1995-1283539-1.

3.

(1947). Fourier-Wiener transforms of analytic functionals belonging to <TEX>$L_2$</TEX> over the space C. Duke Math. J., 14, 99-107. 10.1215/S0012-7094-47-01409-9.

4.

(1947). The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals. Ann. of Math., 48, 385-392. 10.2307/1969178.

5.

(1976). An <TEX>$L_2$</TEX> analytic Fourier-Feynman transform. Michigan Math. J., 23, 1-30. 10.1307/mmj/1029001617.

6.

Feynman integral of variation of functionals;Gaussian Random Fields.

7.

(1980). Some Banach algebras of analytic Feynman integrable functionals (18-67). Analytic Functions, Kozubnik, 1979, Lecture Notes in Math..

8.

(1987). Relationships between the Wiener integral and the analytic Feynman integral. Rend. Circ. Mat. Palermo (2) Suppl., 17, 117-133.

9.

(1948). Space-time approach to non-relativistic quantum mechanics. Rev. Modern Phys., 20, 115-142.

10.

(2007). Evaluation Formulas for Conditional Function Space Integrals I. Stochastic Analysis and Applications, 25, 141-168. 10.1080/07362990601052185.

11.

(2009). Generalized Fourier-Wiener function space transforms. J. Korean Math. Soc., 46, 327-345. 10.4134/JKMS.2009.46.2.327.

12.

(2010). Convolution products, integral transforms and inverse integral transforms of functionals in <TEX>$L_2(C_0[0,T])$</TEX>. Integral Transforms Spec. Funct., 21, 143-151. 10.1080/10652460903063382.

13.

(2009). Integral transforms of functionals in <TEX>$L^2(C_{a,b}[0,T])$</TEX>. J. Four. Anal. Appl., 15, 441-462. 10.1007/s00041-009-9076-y.

14.

(2011). Generalized integral transforms and convolution products on function space. Integral Transforms Spec. Funct., 22, 573-586. 10.1080/10652469.2010.535798.

15.

(1989). Evaluation formulas for conditional abstract Wiener integrals. Stochastic Analysis and Applications, 7, 125-144. 10.1080/07362998908809173.

16.

(1990). Evaluation formulas for conditional abstract Wiener integrals II. J. Korean Math. Soc., 27, 137-144.

17.

(0000). Fourier-type functionals on Wiener space. to appear in the Bull. Korean Math. Soc., .

18.

(0000). A sequential analytic Feynman integral of functionals in <TEX>$L_2(C_0[0,T])$</TEX>. Integral Transforms Spec. Funct., .

19.

(1979). Scale-invariant measurability in Wiener space. Pacific J. Math., 83, 157-176. 10.2140/pjm.1979.83.157.

20.

(0000). Gaussian Measure in Banach Space . Lecture Notes in Mathematics.

21.

On the Paley-Wiener theorem. Theory of Functions and Applications. Collection of Works Dedicated to the Memory of Mkhitar M. Djrbashian.

22.

(1999). Paley-Wiener type theorems. Frac. Calc. Appl. Anal., 2, 135-143.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics