바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN SPACE FORM WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2014, v.21 no.1, pp.39-50
https://doi.org/10.7468/jksmeb.2014.21.1.39
Jin, Dae Ho

Abstract

In this paper, we study screen quasi-conformal irrotational half lightlike submanifolds M of a semi-Riemannian space form <TEX>$\tilde{M}(c)$</TEX> admitting a semi-symmetric non-metric connection, whose structure vector field <TEX>${\zeta}$</TEX> is tangent to M. The main result is a classification theorem for such Einstein half lightlike submanifolds of a Lorentzian space form admitting a semi-symmetric non-metric connection.

keywords
screen quasi-conformal, half lightlike submanifold, semi-symmetric non-metric connection

Reference

1.

Ageshe, N.S. & Chafle, M.R.. (1992). A semi-symmetric non-metric connection on a Riemannian manifold. Indian J. Pure Appl. Math., 23(6), 399-409.

2.

de Rham, G.. (1952). Sur la reductibilite d'un espace de Riemannian. Comm. Math. Helv., 26, 328-344. 10.1007/BF02564308.

3.

Duggal, K.L. & Bejancu, A. Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications.

4.

Duggal, K.L. & Sahin, B.. Differential geometry of lightlike submanifolds. Frontiers in Mathematics.

5.

Jin, D.H.. (0000). Geometry of lightlike hypersurfaces of a semi-Riemannian space form with a semi-symmetric non-metric connection. Indian J. Pure Appl. Math, .

6.

Jin, Dae Ho;. (2013). EINSTEIN LIGHTLIKE HYPERSURFACES OF A LORENTZ SPACE FORM WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION. Bulletin of the Korean Mathematical Society, 50(4), 1367-1376. 10.4134/BKMS.2013.50.4.1367.

7.

Jin, D.H.. (0000). Einstein half lightlike submanifolds of a Lorentzian space form with a semi-symmetric non-metric connection. Journal of Inequalities and Applications, .

8.

Jin, Dae Ho;. (2013). TWO CHARACTERIZATION THEOREMS FOR IRROTATIONAL LIGHTLIKE GEOMETRY. Communications of the Korean Mathematical Society, 28(4), 809-818. 10.4134/CKMS.2013.28.4.809.

9.

Massamba, F.. (2012). Screen almost conformal lightlike geometry in indefinite Kenmotsu space forms. Int. Electron. J. Geom., 5(2), 36-58.

10.

Jin, Dae-Ho;. (2012). LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION. J. Korean Soc Math. Edu. Ser. B: Pure Appl. Math, 19(3), 211-228. 10.7468/jksmeb.2012.19.3.211.

11.

Jin, Dae Ho;Lee, Jae Won;. (2013). A CLASSIFICATION OF HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION. Bulletin of the Korean Mathematical Society, 50(3), 705-717. 10.4134/BKMS.2013.50.3.705.

12.

Kupeli, D.N.. Singular Semi-Riemannian Geometry.

13.

O'Neill, B.. Semi-Riemannian Geometry with Applications to Relativity.

14.

Yasar, E.; CAoken, A.C. & YAucesan, A.. (2008). Lightlike hypersurfaces in semi-Riemannian manifold with semi-symmetric non-metric connection. Math. Scand., 102, 253-264.

15.

Duggal, K.L. & Jin, D.H.. Null curves and Hypersurfaces of Semi-Riemannian Manifolds.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics