바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

THE SCHWARZ LEMMA AND ITS APPLICATION AT A BOUNDARY POINT

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2014, v.21 no.3, pp.219-227
https://doi.org/10.7468/jksmeb.2014.21.3.219
Jeong, Moonja
  • Downloaded
  • Viewed

Abstract

In this note we study the Schwarz lemma and inequalities for some holomorphic functions on the unit disc. Also, we obtain the inequality of the derivative of holomorphic maps at a boundary point of the unit disc and find a holomorphic map to satisfy the equality.

keywords
Schwarz lemma, boundary point, unit disc, holomorphic map

Reference

1.

H.P. Boas. (2010). Julius and Julia: Mastering the Art of the Schwarz Lemma. Amer. Math. Monthly, 117, 770-785. 10.4169/000298910X521643.

2.

R. Greene & S. Krantz. Function theory of one complex variable, Graduate studies on Mathematics Vol. 40.

3.

Jeong, Moon-Ja;. (2011). THE SCHWARZ LEMMA AND BOUNDARY FIXED POINTS. The Pure and Applied Mathematics, 18(3), 275-284. 10.7468/jksmeb.2011.18.3.275.

4.

Z. Nehari. Conformal Mapping.

5.

B. Ornek. (2013). Scharpened forms of the Schwarz lemma on the boundary. Bull. Korean Math. Soc., 50, 2053-2059. 10.4134/BKMS.2013.50.6.2053.

6.

R. Osserman. (2000). A Sharp Schwarz Inequality on the boundary. Proc. Amer. Math. Soc., 128, 3513-3517. 10.1090/S0002-9939-00-05463-0.

7.

H. Silverman. Complex Variables.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics