ISSN : 1226-0657
Alexseev's formula generalizes the variation of constants formula and permits the study of a nonlinear perturbation of a system with certain stability properties. In this paper, we investigate bounds for solutions of the functional nonlinear perturbed differential systems using the two notion of h-stability and <TEX>$t\infty$</TEX>-similarity.
Choi, S.K.;Koo, N.J.;Ryu, H.S.;. (1997). h-stability of differential systems via t∞-similarity. Bull. Korean. Math. Soc., 34, 371-383.
Alekseev, V.M.;. (1961). An estimate for the perturbations of the solutions of ordinary differential equations. Vestn. Mosk. Univ. Ser. I. Math. Mekh., 2, 28-36.
Choi, S.K.;Koo, N.J.;. (1995). h−stability for nonlinear perturbed systems. Ann. of Diff. Eqs., 11, 1-9.
Choi, S.K.;Ryu, H.S.;. (1993). h−stability in differential systems. Bull. Inst. Math. Acad. Sinica, 21, 245-262.
Choi, S.K.;Goo, Y.H.;Koo, N.J.;. (1997). Lipschitz exponential asymptotic stability for nonlinear functional systems. Dynamic Systems and Applications, 6, 397-410.
Choi, S.K.;Koo, N.J.;Song, S.M.;. (1999). Lipschitz stability for nonlinear functional differential systems. Far East J. Math. Sci(FJMS)I, 5, 689-708.
Conti, R.;. (1957). t∞-similitudine tra matricie l’equivalenza asintotica dei sistemi differenziali lineari. Rivista di Mat. Univ. Parma, 8, 43-47.
Y.H., Goo;. (2013). Boundedness in the perturbed differential systems. J. Korean Soc. Math. Edu. Ser.B: Pure Appl. Math., 20, 223-232.
Goo, Y.H.;. Boundedness in nonlinear functional perturbed differential systems.
Goo, Y.H.;. (2013). Boundedness in perturbed nonlinear differential systems. J. Chungcheong Math. Soc., 26, 605-613. 10.14403/jcms.2013.26.3.605.
Goo, Y.H.;Ry, D.H.;. (2010). h-stability of the nonlinear perturbed differential systems. J. Chungcheong Math. Soc., 23, 827-834.
Hewer, G.A.;. (1973). Stability properties of the equation by t∞-similarity. J. Math. Anal. Appl., 41, 336-344. 10.1016/0022-247X(73)90209-6.
Lakshmikantham, V.;Leela, S.;. Differential and Integral Inequalities: Theory and Applications.
Pachpatte, B.G.;. (2002). On some retarded inequalities and applications. J. Ineq. Pure Appl. Math., 3, 1-7.
Pinto, M.;. (1984). Perturbations of asymptotically stable differential systems. Analysis, 4, 161-175.
Pinto, M.;. (1992). Stability of nonlinear differential systems. Applicable Analysis, 43, 1-20. 10.1080/00036819208840049.