바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

BOUNDEDNESS IN THE FUNCTIONAL NONLINEAR PERTURBED DIFFERENTIAL SYSTEMS

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2015, v.22 no.2, pp.101-112
https://doi.org/10.7468/jksmeb.2015.22.2.101
GOO, YOON HOE

Abstract

Alexseev's formula generalizes the variation of constants formula and permits the study of a nonlinear perturbation of a system with certain stability properties. In this paper, we investigate bounds for solutions of the functional nonlinear perturbed differential systems using the two notion of h-stability and <TEX>$t\infty$</TEX>-similarity.

keywords
h-stability, <tex> $t\infty$</tex>-similarity, functional differential systems

Reference

1.

Choi, S.K.;Koo, N.J.;Ryu, H.S.;. (1997). h-stability of differential systems via t&#x221E;-similarity. Bull. Korean. Math. Soc., 34, 371-383.

2.

Alekseev, V.M.;. (1961). An estimate for the perturbations of the solutions of ordinary differential equations. Vestn. Mosk. Univ. Ser. I. Math. Mekh., 2, 28-36.

3.

Choi, S.K.;Koo, N.J.;. (1995). h−stability for nonlinear perturbed systems. Ann. of Diff. Eqs., 11, 1-9.

4.

Choi, S.K.;Ryu, H.S.;. (1993). h−stability in differential systems. Bull. Inst. Math. Acad. Sinica, 21, 245-262.

5.

Choi, S.K.;Goo, Y.H.;Koo, N.J.;. (1997). Lipschitz exponential asymptotic stability for nonlinear functional systems. Dynamic Systems and Applications, 6, 397-410.

6.

Choi, S.K.;Koo, N.J.;Song, S.M.;. (1999). Lipschitz stability for nonlinear functional differential systems. Far East J. Math. Sci(FJMS)I, 5, 689-708.

7.

Conti, R.;. (1957). t&#x221E;-similitudine tra matricie l&#x2019;equivalenza asintotica dei sistemi differenziali lineari. Rivista di Mat. Univ. Parma, 8, 43-47.

8.

Y.H., Goo;. (2013). Boundedness in the perturbed differential systems. J. Korean Soc. Math. Edu. Ser.B: Pure Appl. Math., 20, 223-232.

9.

Goo, Y.H.;. Boundedness in nonlinear functional perturbed differential systems.

10.

Goo, Y.H.;. (2013). Boundedness in perturbed nonlinear differential systems. J. Chungcheong Math. Soc., 26, 605-613. 10.14403/jcms.2013.26.3.605.

11.

Goo, Y.H.;Ry, D.H.;. (2010). h-stability of the nonlinear perturbed differential systems. J. Chungcheong Math. Soc., 23, 827-834.

12.

Hewer, G.A.;. (1973). Stability properties of the equation by t&#x221E;-similarity. J. Math. Anal. Appl., 41, 336-344. 10.1016/0022-247X(73)90209-6.

13.

Lakshmikantham, V.;Leela, S.;. Differential and Integral Inequalities: Theory and Applications.

14.

Pachpatte, B.G.;. (2002). On some retarded inequalities and applications. J. Ineq. Pure Appl. Math., 3, 1-7.

15.

Pinto, M.;. (1984). Perturbations of asymptotically stable differential systems. Analysis, 4, 161-175.

16.

Pinto, M.;. (1992). Stability of nonlinear differential systems. Applicable Analysis, 43, 1-20. 10.1080/00036819208840049.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics