바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

APPROXIMATE QUARTIC LIE -DERIVATIONS

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2015, v.22 no.4, pp.389-401
https://doi.org/10.7468/jksmeb.2015.22.4.389
KOH, HEEJEONG

Abstract

We will show the general solution of the functional equation f(x + ay) + f(x &#x2212; ay) + 2(a<sup>2</sup> &#x2212; 1)f(x) = a<sup>2</sup>f(x + y) + a<sup>2</sup>f(x &#x2212; y) + 2a<sup>2</sup>(a<sup>2</sup> &#x2212; 1)f(y) and investigate the stability of quartic Lie *-derivations associated with the given functional equation.

keywords
Hyers-Ulam-Rassias stability, quartic mapping, Lie *-derivation, Banach *-algebra, fixed point alternative

Reference

1.

Jang, S;Park, C;. (2011). Approximate *-derivations and approximate quadratic *-derivations on C*-algebra. J. Inequal. Appl., 2011.

2.

Hyers, D.H;Isac, G;Rassias, Th.M;. Stability of Functional Equations in Several Variables.

3.

Hyers, D.H;. (1941). On the stability of the linear equation. Proc. Nat. Acad. Sci. U.S.A., 27, 222-224. 10.1073/pnas.27.4.222.

4.

Fošner, A;Fošner, M;. (2013). Approximate cubic Lie derivations. Abstract and Applied Analysis, 2013, 5.

5.

Czerwik, St;. (1992). On the stability of the quadratic mapping in normed spaces. Abh. Math. Sem. Univ. Hamburg, 62, 59-64. 10.1007/BF02941618.

6.

Chung, J.K;Sahoo, P.K;. (2003). On the general solution of a quartic functional equation. Bull. Korean Math. Soc., 40(4), 565-576. 10.4134/BKMS.2003.40.4.565.

7.

Brzd&#x229;k, J;C&#x1CE;dariu, L;Ciepli&#x144;ski, K;. (2012). On some recent developments in Ulam&#x2019;s type stability. Abstract and Applied Analysis, 2012, 41.

8.

Brillou&#xEB;et-Belluot, N;Brzd&#x229;k, J;Ciepli&#x144;ski, K;. (2014). Fixed point theory and the Ulam stability. Abstract and Applied Analysis, 2014, 16.

9.

Aoki, T;. (1950). On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan, 2, 64-66. 10.2969/jmsj/00210064.

10.

Yang, S.Y;Bodaghi, A;Atan, K.A.M;. (2012). Approximate cubic *-derivations on Banach *-algebra. Abstract and Applied Analysis, 2012, 12.

11.

Xu, T.Z;Rassias, J.M;Xu, W.X;. (2012). A generalized mixed quadratic-quartic functional equation. Bull. Malaysian Math. Scien. Soc., 35, 633-649.

12.

Ulam, S.M;. Problems in Morden Mathematics.

13.

Sahoo, P.K;. (2005). A generalized cubic functional equation. Acta Math. Sinica, 21(5), 1159-1166. 10.1007/s10114-005-0551-3.

14.

Rus, I.A;. Principles and Appications of Fixed Point Theory.

15.

Rassias, Th. M;. (1978). On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc., 72, 297-300. 10.1090/S0002-9939-1978-0507327-1.

16.

Rassias, J.M;. (1999). Solution of the Ulam stability problem for quartic mappings. Glasnik Matematicki Series III, 34(2), 243-252.

17.

Park, C;Bodaghi, A;. (2012). On the stability of *-derivations on Banach *-algebras. Adv. Diff. Equat., 2012, 138. 10.1186/1687-1847-2012-138.

18.

Margolis, B;Diaz, J.B;. (1968). A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Amer. Math. Soc., 126(74), 305-309.

19.

Jung, S.-M;. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics