Purpose: The purpose of this study is to develop a highly accurate mobile air quality monitoring system suitable for use in various event-specific locations, such as fireworks festivals or construction sites. Research design, data and methodology: The study focuses on optimizing the selection and design of equipment for a mobile air quality monitoring system, aiming to reduce production costs and improve measurement accuracy. It includes a comparative analysis with existing Air Quality Monitoring Stations (AQMS) and enhances calibration methods to stabilize performance under various environmental conditions. This approach ensures a cost-effective, accurate, and efficient mobile air quality monitoring system. Results: By utilizing measurement data collected from various regions, further improvements can be made in the future to develop a more efficient and accurate mobile air quality monitoring system. The accuracy of the existing mobile air quality monitoring system has been enhanced through this study, making it applicable for measurements in various fields. Conclusions: With the growing concern about air pollution, a mobile air quality monitoring system could be effectively utilized in areas where event-based air pollution occurs, such as firework festivals or construction sites. In the future, by utilizing data from various regions, further improvements and enhancements can be made to the system, leading to a more efficient and accurate mobile air quality monitoring system.