바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

메뉴

Estimating psychological test norms using quantile regression models

Abstract

Norms of not normally distributed psychological tests could be better estimated by quantiles instead of means and standard deviations. Psychological test norms can also be estimated using statistical models when the measured attribute has a functional relation with related covariates. The current study introduced a normative-quantile-estimation procedure using the quantile regression model when a test score is not expected to have normal distribution but assumed to have a functional relation with related covariates. The idea of the quantile regression model was briefly explained and its application to estimation of a test norm was illustrated. The 5th, 10th, and 25th percentiles of the calculation ability test scores with range of 0-12 were regressed on age and education by the quantile regression model using a normative sample of 1060 normal elderly. The estimated quantiles provided a norm that supports a theoretical model of the relations between calculation ability and the covariates of age and education.

keywords
quantile regression model, psychological test norm, model-based norming, normality assumption, 분위수 회귀모형, 심리검사 규준, 모형 기반 규준화, 정규성 가정

Reference

1.

강연욱, 나덕렬 (2003). 서울신경심리검사(SNSB). 인천: 휴브알엔씨.

2.

강연욱, 장승민, 나덕렬 (2012). 서울신경심리검사 2판(SNSB-II). 인천: 휴브알엔씨.

3.

배소영, 곽금주 (2011). 한국판 맥아더-베이츠 의사소통발달 평가. 마인드프레스.

4.

서은현, 이동영, 추일한, 윤종철, 김기웅, 우종인 (2007). 벤톤 시각 기억 검사(Benton Visual Retention Test)의 한국 노인 정상규준연구. 한국심리학회지: 임상, 26, 745-763.

5.

우종인, 김기웅, 김성윤, 김주한, 우성일, 윤종철, 이강욱, 이군희, 이동영, 이정희, 주진형, 한설희 (2003). 한국판 CERAD 평가집(CERAD-K). 서울대학교출판부

6.

장승민, 강연욱 (2012). 정규분포가 가정된 심리검사의 규준추정을 위한 모형 기반 접근. 한국심리학회지: 일반, 31, 923-944.

7.

황순택, 김지혜, 박광배, 최진영, 홍상황 (2011). 한국판 웩슬러 성인 지능 검사 4판 (K-WAIS-IV). 대구: 한국심리.

8.

Barone, C., & van de Werfhorst, H. G. (2011). Education, cognitive skills and earnings in comparative perspective. International Sociology, 26, 483-502.

9.

Bollaerts, K., Eilers, P., & Aerts, M. (2006). Quantile regression with monotonicity restrictions using P-splines and the L1-norm. Statistical Modelling, 6, 189-207.

10.

Box, G. E. P. & Cox, D. R. (1964) An analysis of transformations. Journal of the Royal Statistical Society, Series B, 26, 211-252.

11.

Bridges, A. J., & Holler, K. A. (2007). How many is enough? Determining optimal sample sizes for normative studies in pediatric neuropsychology. Child Neuropsychology, 13, 528-538.

12.

Christensen, K. J., Multhaup, K. S., Nordstrome, S., & Voss, K. (1991). A cognitive battery for dementia: Development and measurement characteristics. Psychological Assessment, 3, 168- 174.

13.

Crawford, J. R., & Garthwaite, P. H. (2008). On the “optimal” size for normative samples in neuropsychology: Capturing the uncertainty when normative data are used to quantify the standing of a neuropsychological test score. Child neuropsychology, 14, 99-117.

14.

Fenson, L., Dale, P. S., Reznick, J. S., Bates, E., Thal, D. J., & Pethick, S. J. (1994). Variability in early communicative development. Monograph of Society for Research in Child Development, 59(5, Series No. 242).

15.

Furr, R. M., & Bacharach, V. R. (2014). Psychometrics: An Introduction. Los Angeles: Sage Publications.

16.

Garsd, A., Ford, G. E., Waring, G. O., & Rosenblatt, L. S. (1983). Sample size for estimating the quantiles of endothelial cell-area distribution. Biometrics, 39, 385-394.

17.

Glisky, E. L. (2007). Changes in cognitive function in human aging. In D. R. Riddle (Ed.), Brain Aging: Models, Methods, and Mechanisms. Boca Raton, FL: CRC Press. Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK3885/

18.

Guo, S. S., Roche, A. F., Chumlea, W. C., Johnson, C., Kuczmarski. R. J., & Curtin, R. (2000). Statistical effects of varying sample sizes on the precision of percentile estimates. American Journal of Human Biology, 12, 64-74.

19.

Hao, L., & Naiman, D. Q. (2007). Quantile Regression. Thousand Oaks, CA: Sage Publications.

20.

van Hooren, S. A., Valentijn, A. M., Bosma. H., Ponds, R. W., van Boxtel, M. P., & Jolles, J. (2007). Cognitive functioning in healthy older adults aged 64-81: A cohort study into the effects of age, sex, and education. Aging, Neuropsychology, and Cognition: A Journal on Normal and Dysfunctional Development, 14, 40- 54.

21.

Jahng, S., Wood, P. K., & Trull, T. J. (2008). Analysis of affective instability in ecological momentary assessment: Indices using successive difference and group comparison via multilevel modeling. Psychological Methods, 13, 354-375.

22.

Johnson, N. L. (1949). Systems of frequency curves generated by methods of translation. Biometrika, 36, 149-176.

23.

Koenker, R., & Bassett, G. W. (1978). Regression Quantiles. Econometrica, 46, 33-50.

24.

Koenker, R, & Hallock, K. F. (2001). Quantile regression. Journal of Economic Perspectives, 15, 143-156.

25.

Koenker, R., & Machado, J. (1999). Goodness of fit and related inference processes for quantile regression. Journal of the American Statistical Association, 94, 1296-1310.

26.

Koenker, R., & Park, B. J. (1996). An interior point algorithm for nonlinear quantile regression. Journal of Econometrics, 71, 265-283.

27.

Salthouse, T. A., Atkinson, T. M., Berish, D. E. (2003). Executive functioning as a potential mediator of age-related cognitive decline in normal adults. Journal of Experimental Psychology: General, 132, 566-594.

28.

Taylor, R. (1998). Continuous norming: Improved equations for the WAIS-R. British Journal of Clinical Psychology, 37, 451-456.

29.

Wei, Y., Pere, A., Keonker, R., & He, X. (2006). Quantile regression methods for reference growth charts. Statistics in Medicine, 25, 1369-1382.

30.

Wechsler, D. (2008). Wechsler Adult Intelligence Scale-Fourth Edition: Technical and interpretive manual. San Antonio, TX: Pearson.

31.

WHO Multicentre Growth Reference Study Group. (2006). WHO child growth standards based on length/height, weight and age. Acta Paediatrica Supplementum, 450, 76-85.

32.

Zachary, R. A., & Gorsuch, R. L. (1985). Continuous norming: Implications for the WAIS-R. Journal of Clinical Psychology, 41, 86-94.

logo