이 연구의 목적은 대량의 최신정보를 제공하는 정보필터링 시스템에서 이용자 피드백에 의해 수정질의를 자동생성하여 재검색을 수행함으로써 검색 성능을 최적화할 수 있는 방안을 찾는 데 있다. 이용자가 입력한 초기질의를 사용하여 정보필터링 시스템이 검색한 문헌에 대해 이용자가 적합성 여부를 온라인으로 입력하도록 하고, 이 피드백 결과를 토대로 '중복제거법'과 '저빈도제거법' 두 가지 방법에 의해각각 17개의 수정질의를 생성하여 재검색한 결과를 초기 검색결과와 비교 분석하였다. 수정질의는 각각의 방법마다 17개 패턴의 불논리 질의형태를 미리 만든 다음 초기질의에 디스크립터와 분류기호를 결합하여 생성하였으며, 재검색 결과에 대한 적합성 평가를 통해 최적의 수정질의식을 도출하였다.
In this study an information filtering system was implemented and a series of relevance feedback experiments were conducted using the system. For the relevance feedback, the original queries were searched against the database and the results were reviewed by the researchers. Based on users' online relevance judgements a pair of 17 refined queries were generated using two methods called "co-occurrence exclusion method" and "lower frequencies exclusion method." In order to generate them, the original queries. the descriptors and category codes appeared in either relevant or irrelevant document sets were applied as elements. Users' relevance judgments on the search results of the refined queries were compared and analyzed against those of the original queries. [ 더 많은 내용 보기 ]