바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073
  • KCI

클러스터링 기법을 이용한 개별문서의 지식구조 자동 생성에 관한 연구

Automatic Generation of the Local Level Knowledge Structure of a Single Document Using Clustering Methods

정보관리학회지 / Journal of the Korean Society for Information Management, (P)1013-0799; (E)2586-2073
2004, v.21 no.3, pp.251-267
https://doi.org/10.3743/KOSIM.2004.21.3.251
한승희 (일본 Keio University)
정영미 (연세대학교)

초록

The purpose of this study is to generate the local level knowledge structure of a single document, similar to end-of-the-book indexes and table of contents of printed material, through the use of term clustering and cluster representative term selection. Furthermore, it aims to analyze the functionalities of the knowledge structure, and to confirm the applicability of these methods in user-friendly information services. The results of the term clustering experiment showed that the performance of the Ward's method was superior to that of the fuzzy K-means clustering method. In the cluster representative term selection experiment, using the highest passage frequency term as the representative yielded the best performance. Finally, the result of user task-based functionality tests illustrate that the automatically generated knowledge structure in this study functions similarly to the local level knowledge structure presented in printed material.攀*** 본 연구는 연세대학교 대학원 박사학위논문의 일부를 요약한 것임.*** 日本 慶應義塾大學(Keio University) 圖書館情報學科 訪問硏究員(libinfo@yonsei.ac.kr)****연세대학교 문헌정보학과 교수(ymchung@yonsei.ac.kr) 논문접수일자 : 2004년 8월 17일 게재확정일자 : 2004년 9월 10일攀攀

keywords
용어 클러스터링, 클러스터 대표어, 지역적 지식구조, 워드 기법, 퍼지 K-means 클러스터링 기법, term clustering, cluster representative term, local level knowledge structure, Ward's method, fuzzy K-means clustering method

참고문헌

1.

김효열. (1995). 도서권말색인의 작성지침과 자동생성에 관한 연구.

2.

박지연. (2001). 질의확장에 의한 단락검색의 성능 향상에 관한 연구.

3.

서은경. (1984). 용어의 자동분류에 관한 연구.

4.

유안나. (1992). 원문대표정보의 비교평가에 관한 연구.

5.

이광형. (1991). 퍼지 이론 및 응용: 1권 이론:서울: 홍릉과학출판사.

6.

정영미. (2001). 지식분류의 자동화를 위한 클러스터링 모형 연구. 정보관리학회지, 18(2), 203-230.

7.

한승희. (2003). 용어 자동분류를 위한 퍼지 클러스터링 기법 분석 (95-103). 제10회 한국정보관리학회 학술대회 논문집. 서울: 이화여자대학교 포스코관.

8.

Bezdek, James C. (1981). Pattern Re- cognition with Fuzzy Objective Function Algorithms:New York: Plenum Press.

9.

Cao, Guihong. (2004). Fuzzy K-means Clustering on a High Dimensional Semantic Space (-). Advanced Web Technology and Applications: 6th Asia-Pacific Web Conference (APWeb 2004).

10.

Ding, Ying. (2001). Bibliometric Cartography of Information Re- trieval Research by Using Co- word Analysis. Information Pro- cessing & Management,, 37, 817-842.

11.

Gaush, Audrey P. (2002). Exploring the Conditional Coregulation of Yeast Gene Ex- pression through Fuzzy K-means Clustering. Genome Biology, 3(11), 1-22.

12.

Hearst, Marti, A. (1996). Reexamining the Cluster Hypothesis: Scatter/Gather on Retrieval Results (76-84). Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR ’96).

13.

Ingwersen, P. (2001). Mapping National Research Profiles in Social Sci- ence. Journal of Documentation, 57(6), 715-740.

14.

Jain, A. K. (1999). Data Clustering: A Review. ACM Computing Surveys, 31(3), 264-323.

15.

Milligan, G. W. (1983). The Effect of Cluster Size, Dimensionality, and the Number of Cluster on Re- covery of True Cluster Structure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(1), 40-47.

16.

Mima, H. (2001). ATRACT Workbench: An Automatic Term Recognition and Clustering of Terms (126-133). Text, Speech and Dialog(TSD 2001). Berlin: Springer.

17.

Nenadiĉ, G., Spasiĉ, L. (2002). Term Clustering using a Corpus-Based Similarity Measure:Berlin: Springer.

18.

Sneath, Peter, H. A. (1973). Numerical Taxonomy: The Principles and Practice of Numerical Classification:San Francisco: W. H. Freeman and Com- pany.

19.

Song Dawei. (2009). Fuzzy K-means Clus- tering in Information Retrieval. http://www.dstc.edu.au/Research/Projects/Infoeco/publications/tech-report-K-means.pdf.

20.

Ward, J. H. (1963). Hierarchical Grouping to Minimize an Object Function. Journal of the American Statisti- cal Association, 58, 236-244.

21.

White, Howard D. (1998). Visualizing a Discipline: An Author Co-Citation Analysis of Information Science, 1972-1995. Journal of the American Society for Information Science, 49(4), 327-355.

정보관리학회지