The proliferating use of e-journals has led increasing interest in collecting and analyzing usage statistic information. However, the existing manual method and simple journal usage reports provided by publishers hinder the effective collection of large-scale usage statistics and the comprehensive/in-depth analysis on them. Thus we have proposed a hybrid automatic method of collecting e-journal usage statistics based on screen scraping and SUSHI protocol. In addition, the generation method of summary statistics presented in graphs, charts and tables has been suggested in this study. By utilizing the suggested system and analysis data, librarians can compose various reports on budget or operation of the libraries.
The purpose of this study is to examine the factors which have an effect on researcher’s behavior and attitudes about depositing data from sponsored research. I analyzed the behavior, barriers, incentives and information infrastructure of 135 researchers in 35 Korean research institutes. The survey identified several factors that may encourage timely deposit of data by researchers. According to the analyzing factors, I propose the following methods in perception, incentives, use, policy and information infrastructure aspects.
There have been many methods and algorithms proposed for multidimensional scaling to mapping the relationships between data objects into low dimensional space. But traditional techniques, such as PROXSCAL or ALSCAL, were found not effective for visualizing the proximities between objects and the structure of clusters of large data sets have more than 50 objects. The CLUSCAL(CLUster-oriented SCALing) technique introduced in this paper differs from them especially in that it uses cluster structure of input data set. The CLUSCAL procedure was tested and evaluated on two data sets, one is 50 authors co-citation data and the other is 85 words co-occurrence data. The results can be regarded as promising the usefulness of CLUSCAL method especially in identifying clusters on MDS maps.
The purpose of this study is to analyze the effects of organizational communication satisfaction of teacher librarians on the informational and educational service and to draw implications for improvement of the school libraries' educational role. According to the results of the analysis, teacher librarians have preferred informal communication by conversation and face-to-face talk with superiors or co-workers and horizontal communication during their performance. Characteristics of teacher librarians, such as career, gender and school levels, have influential effect on user education, library- assisted instruction, reading and information literacy instruction. The more teacher librarians felt satisfaction of the informal communication, the more textbook-related reference lists are offered. Horizontal communication have a positive influence on information literacy instruction. However, teacher librarians should utilize cooperative statements, committees and councils and actively participate in those horizontal communication methods to share the vision and aims of school libraries with the larger school community. Teacher librarians also should put more efforts into developing their leadership role and marketing strategies in order to overcome the weaknesses of informal communication.
This study focuses on the characteristics of information seeking behavior through the casual interactions which are regular contacts with others as information sources in the context of ELIS. Qualitative data were gathered using semi-structured one-to-one interviews with 9 wild-goose mothers in order to investigate the casual interactions. We identified information needs, patterns and characteristics of information seeking behavior through the casual interactions and the major interpretative repertoires.
This study is an exploratory research on the user relevance criteria in Korean search service environments that provide integrated search results. Data were collected from 10 participants using a semi-structured interview technique. The participants conducted a web search using integrated search services, such as Naver or Daum on a self-selected topic. They were asked to judge the relevance of retrieved documents and to report their relevance criteria. As a result, the research indicated 8 user-defined relevance and non-relevance criteria. The research shows that specificity and richness are the two most important criteria yet, the user’s relevance criteria have not changed much despite the change in search environment.
Social Q&A sites such as Yahoo! Answers and Naver Knowledge-iN have become a viable method for information seeking and sharing on the Web. Considering their immense popularity and growing concerns about their validity as information sources, questions about the credibility of the information provided on social Q&As are timely. Therefore, this paper summarizes recent research on credibility related to the social Q&A context, identifies research gaps, and presents a research agenda for future research to advance this newly developing area.
In text categorization, core terms of an input document are hardly selected as classification features if they do not occur in a training document set. Besides, synonymous terms with the same concept are usually treated as different features. This study aims to improve text categorization performance by integrating synonyms into a single feature and by replacing input terms not in the training document set with the most similar term occurring in training documents using Wikipedia. For the selection of classification features, experiments were performed in various settings composed of three different conditions: the use of category information of non-training terms, the part of Wikipedia used for measuring term-term similarity, and the type of similarity measures. The categorization performance of a kNN classifier was improved by 0.35~1.85% in F1 value in all the experimental settings when non-learning terms were replaced by the learning term with the highest similarity above the threshold value. Although the improvement ratio is not as high as expected, several semantic as well as structural devices of Wikipedia could be used for selecting more effective classification features.
CVM (Contingent Valuation Method) has been most widely used for valuation of public libraries. However, there have been a debate on the validity of CVM in that many kind of biases could exist due to its hypothetical nature, the type of questions, payment vehicles and so on. To ensure the validity and reliability of public library valuation, this study analyzed the effects of payment vehicles to valuation using CVM. Three types of payment vehicle, tax, donation, fee were used to pay in hypothetical market. As a result, these payment vehicles estimated the different WTP and donation produced 14,542 won, which is the highest WTP.
The characteristics of citation and centrality measures in citation networks can be identified using multiple linear regression analyses. In this study, we examine the relationships between bibliometric indices and centrality measures in an article-level co-citation network to determine whether the linear model is the best fitting model and to suggest the necessity of data transformation in the analysis. 703 highly cited articles in Physics published in 2004 were sampled, and four indicators were developed as variables in this study: citation counts, degree centrality, closeness centrality, and betweenness centrality in the co-citation network. As a result, the relationship pattern between citation counts and degree centrality in a co-citation network fits a non-linear rather than linear model. Also, the relationship between degree and closeness centrality measures, or that between degree and betweenness centrality measures, can be better explained by non-linear models than by a linear model. It may be controversial, however, to choose non-linear models as the best-fitting for the relationship between closeness and betweenness centrality measures, as this result implies that data transformation may be a necessary step for inferential statistics.
One of the limitations of BOW method is that each term is recognized only by its form, failing to represent the term’s meaning or thematic background. To overcome the limitation, different profiles for each term were defined by thematic categories depending on contextual characteristics. In this study, a specific term was used as a classification feature based on its meaning or thematic background through the process of comparing the context in those profiles with the occurrences in an actual document. The experiment was conducted in three phases; term weighting, ensemble classifier implementation, and feature selection. The classification performance was enhanced in all the phases with the ensemble classifier showing the highest performance score. Also, the outcome showed that the proposed method was effective in reducing the performance bias caused by the total number of learning documents.
This study purported to investigate the possibility of automatic descriptor assignment using the reclassification of author keywords in domestic scholarly databases. In the first stage, we selected optimal classifiers and parameters for the reclassification by comparing the characteristics of machine learning classifiers. In the next stage, learning the author keywords that were assigned to the selected articles on readings, the author keywords were automatically added to another set of relevant articles. We examined whether the author keyword reclassifications had the effect of vocabulary control just as descriptors collocate the documents on the same topic. The results showed the author keyword reclassification had the capability of the automatic descriptor assignment.