바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073
  • KCI

Fusion Approach for Optimizing Web Search Performance

Journal of the Korean Society for Information Management / Journal of the Korean Society for Information Management, (P)1013-0799; (E)2586-2073
2015, v.32 no.1, pp.7-22
https://doi.org/10.3743/KOSIM.2015.32.1.007

Abstract

This paper describes a Web search optimization study that investigates both static and dynamic tuning methods for optimizing system performance. We extended the conventional fusion approach by introducing the “dynamic tuning” process with which to optimize the fusion formula that combines the contributions of diverse sources of evidence on the Web. By engaging in iterative dynamic tuning process, where we successively fine-tuned the fusion parameters based on the cognitive analysis of immediate system feedback, we were able to significantly increase the retrieval performance.Our results show that exploiting the richness of Web search environment by combining multiple sources of evidence is an effective strategy.

keywords
fusion, information retrieval, Web search, performance optimization, dynamic tuning, 융합, 정보검색, 웹 검색, 성능 최적화, 다이나믹 튜닝

Reference

1.

Amitay, E.. (2003). Topic distillation with knowledge agents (263-272). Proceedings of the11th Text Retrieval Conference.

2.

Bartell, B. T.. (1994). Automatic combination of multiple ranked retrieval systems (-). Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval.

3.

Buckley, C.. (1995). Automatic query expansion using SMART:TREC 3 (1-19). Proceeding of the 3rd Text Rerieval Conference.

4.

Buckley, C.. (1997). Using query zoning and correlation within SMART: TREC 5 (105-118). Proceeding of the 5th Text REtrieval Conference.

5.

Craswell, N.. (2002). Overview of the TREC-2002 Web track (86-95). Proceedings of the 11th Text Retrieval Conference.

6.

Craswell, N.. (2001). Effective site finding using link anchor information (250-257). Proceedings of the 24th ACM SIGIR Conference on Research and Development in Information Retrieval.

7.

Fox, E. A.. (1995). Combination of multiple searches (105-108). Proceeding of the 3rd Text Rerieval Conference.

8.

Frakes, W. B.. (1992). Information retrieval: Data structures & algorithms:Prentice Hall.

9.

Gurrin, C.. (2001). Dublin City University experiments in connectivity analysis for TREC-9 (179-188). Proceedings of the 9th Text Retrieval Conference.

10.

Hawking, D.. (2001). Overview of the TREC-2001 Web track (25-31). Proceedings of the 10th Text Retrieval Conference.

11.

Hawking, D.. (1999). Results and challenges in web search evaluation (243-252). Proceedings of the 8th WWW Conference.

12.

Hawking, D.. (2000). Overview of the TREC-8 web track (131-148). Proceedings of the 8th Text Retrieval Conference.

13.

Kraaij, W.. (2002). The importance of prior probabilities for entry page search (27-34). Proceedings of the 25th ACM SIGIR Conference on Research and Development in Information Retrieval.

14.

Kwok, K. L.. (2005). Information Retrieval Technology:Springer Berlin Heidelberg.

15.

Lee, J. H.. (1997). Analyses of multiple evidence combination (267-276). Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval.

16.

MacFarlane, A.. (2003). Pliers at TREC 2002 (152-155). Proceedings of the 11th Text Retrieval Conference.

17.

Modha, D.. (2000). Clustering hypertext with applications to Web searching (143-152). Proceedings of the 11th ACM Hypertext Conference.

18.

Robertson, S. E.. (1994). Some simple approximations to the 2-poisson model for probabilistic weighted retrieval (232-241). Proceedings of the 17th ACM SIGIR Conference on Research and Development in Information Retrieval.

19.

Savoy, J.. (1998). Report on the TREC-8 experiment: Searching on the web and in distributed collections (229-240). Proceedings of the 8th Text Retrieval Conference.

20.

Savoy, J.. (2001). Report on the TREC-9 experiment: Link-based retrieval and distributed collections (579-516). Proceedings of the 9th Text Retrieval Conference.

21.

Singhal, A.. (1996). Pivoted document length normalization (21-29). Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval.

22.

Singhal, A.. (2001). A case study in web search using TREC algorithms (708-716). Proceedings of the 11th International WWW Conference.

23.

Thompson. P.. (1990). A combination of expert opinion approach to probabilistic information retrieval, part 1: The conceptual model. Information Processing & Management, 26(3), 371-382.

24.

Tomlinson, S.. (2003). Robust, web and genomic retrieval with hummingbird searchServer at TREC 2003 (254-267). Proceedings of the 12th Text Retrieval Conference.

25.

Voorhees, E.. (2000). Overview of the eighth text retrieval conference (1-24). Proceedings of the 8th Text Retrieval Conference.

26.

Xu, J.. (2000). Improving the effectiveness of information retrieval with local context analysis. ACM Transaction on Information Systems, 18(1), 79-112.

27.

Yang, K.. (2002). Combining text-, link-, and classification-based retrieval methods to enhance information discovery on the Web.

28.

Yang, K.. (2002). Combining text- and link-based retrieval methods for web IR (609-618). Proceedings of the 10th Text Rerieval Conference.

29.

Yang, Kiduk. (2014). Combining Multiple Sources of Evidenceto Enhance Web Search Performance. 한국도서관·정보학회지, 45(3), 5-36.

30.

Yang, K.. (2005). In Information Retrieval Technology:Springer Berlin Heidelberg.

31.

Zhang, M.. (2002). THU TREC 2002:Web Track Experiments (591-594). Proceedings of the 11th Text Retrieval Conference.

Journal of the Korean Society for Information Management