바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073
  • KCI

A Study on Application of Predictive Coding Tool for Enterprise E-Discovery

Journal of the Korean Society for Information Management / Journal of the Korean Society for Information Management, (P)1013-0799; (E)2586-2073
2016, v.33 no.4, pp.125-157
https://doi.org/10.3743/KOSIM.2016.33.4.125


Abstract

As the domestic companies which have made inroads into foreign markets have more lawsuits, these companies’ demands for responding to E-Discovery are also increasing. E-Discovery, derived from Anglo-American law, is the system to find electronic evidences related to lawsuits among scattered electronic data within limited time, to review them as evidences, and to submit them. It is not difficult to find, select, review, and submit evidences within limited time given the reality that the domestic companies do not manage their records even though lots of electronic records are produced everyday. To reduce items to be reviewed and proceed the process efficiently is one of the most important tasks to win a lawsuit. The Predictive Coding is a computer assisted review instrument used in reviewing process of E-Discovery, which is to help companies review their own electronic data using mechanical learning. Predictive Coding is more efficient than the previous computer assister review tools and has a merit to select electronic data related to lawsuit. Through companies’ selection of efficient computer assisted review instrument and continuous records management, it is expected that time and cost for reviewing will be saved. Therefore, in for companies to respond to E-Discovery, it is required to seek the most effective method through introduction of the professional Predictive Coding solution and Business records management with consideration of time and cost.

keywords
E-Discovery, electronic discovery, machine learning, search tool, business record, predictive coding, 전자증거개시, 기계학습, 검색도구, 기업기록, 기록관리, 예측 부호화

Reference

1.

김도훈. (2014). 미국 전자증거개시절차상 증거검색 및 수집방법에 관한 연구― 기술지원 검토를 중심으로 ―. 강원법학, 41, 217-252.

2.

김승범. (2015). 기록관리의 기회와 위협요인으로서의 전자증거개시(E-Discovery)제도 연구.

3.

김영수. (2011). E-Discovery 대상 ESI의 컬링 성능 향상을 위한 핵심 기술 (650-651). 한국통신학회학술대회논문집.

4.

김영수. (2011). E-Discovery 프로젝트: EDRM과 Sedona Conference. 주간기술동향, 1509, 14-27.

5.

김일아. (2016). 전자증거개시(E-Discovery)에 대응하는 미국 기업의 기록관리 동향 분석.

6.

김종호. (2015). 세도나 캐나다 원칙상 전자증거개시제도의 준비에 관한 실무상의 문제점. 법학연구, (59), 147-184.

7.

안정혜. (2010). 국제중재에서의 전자증거개시 -전자증거개시를 규율하는 규정의 제정을 중심으로-. 중재연구, 20(2), 67-90.

8.

이태림. (2012). 기업의 효과적인 소송 대응을 위한 전자증거개시 절차 모델과 대체 기술. 디지털융복합연구, 10(8), 287-297.

9.

전복만. (2012). 지식재산분쟁에서 중재제도 활성화를 위한 전자증거개시제도의 정비. 과학기술법연구, 18(3), 367-402.

10.

천우성. (2011). e-Discovery 시스템 설계와 관리를 위한 인증과 암호화 (139-142). 한국컴퓨터정보학회 학술발표논문집.

11.

채은선. (2008). 디지털포렌식을 통한 E-discovery의 실용화에 관한 연구.

12.

탁희성. (2011). 전자증거개시제도(E-Discovery)에 관한 연구. 한국형사정책연구원.

13.

Acosta, A. M.. (2012). Predictive coding: the beginning of a new e-discovery era. Res Gestae, 56, 8-.

14.

An ARMA International Publication. (2012). November/December). Making 'predictive coding’ pay needs cooperation. Information Management, 8, -.

15.

An ARMA International Publication. (2013). March/April). Predictive coding to become an ethical obligation. Information Management, 12, -.

16.

An ARMA International Publication. (2014). May/June). Predictive coding : Not just for E-Discovery. Information Management, 17, -.

17.

Debra, L.. (2008). Using the electronic discovery reference model to process, review and analyze digital evidence. Gartner Research, , -.

18.

EDPB 공식홈페이지. http://www.edbp.com.

19.

EDRM 공식홈페이지. http://www.edrm.net.

20.

Schoenecker, E. Jr. (2015). Nine cases on predictive coding from modus. https://www.linkedin.com/pulse/nine-cases-predictive-coding-from-modus-edward-schoenecker.

21.
22.

E-Discovery Team. (2013). My basic plan for document reviews: The “Bottom Line Driven”approach. https://e-discoveryteam.com/2013/10/01/my-basic-plan-for-document-reviews-the-bottom-line-driven-approach/.

23.

Issacs, L.. (2013). Rolling the dice with predictive coding leveraging analytics technology for information governance. The Information Management Journal, 47(1), 23-26.

24.

Volinino, L.. (2009). E-Discovery for dummies:Wiley.

25.

Pace, N. M.. (2012). Where the money goes: Understanding litigant expenditures for producing electronic discovery:Rand.

26.

Swartz, N.. (2006). New rules for E-Discovery. Information Management, , 22-26.

27.

Dynamo Holdings Limited Partnership. Commissioner of Internal Revenue, 143 T.C. No. 9 (Sept. 17, 2014).

28.

EORHB, Inc., et al. v. HOA Holdings, LLC, C.A. No. 7409-VCL (Del. Ch. Oct. 15, 2012).

29.

In re Actos (Pioglitazone) Product Liability Litigation, No. 611-md-2299 (W.D. La. July 27, 2012).

30.

In Re: Biomet M2a Magnum Hip Implant Products Liability Litigation, No. 3:12-MD-2391 (N.D. Ind. Aug. 21, 2013).

31.

Moore v. Publicis Groupe SA, 2012 WL 1446534(S.D.N.Y. Apr. 26, 2012).

32.

No. 11 Civ. 1279(ALC)(AJP), 2012 WL 607412, at *3(S.D.N.Y. Feb. 24, 2012).

33.

Rio Tinto PLC v. Vale, S.A., et al., No. 1:14-cv-03042-RMB-AJP (S.D.N.Y. Mar. 2, 2015).

Journal of the Korean Society for Information Management