This study proposes the analysis method in sentence semantics that can be automatically identified and processed as appropriate items in the system according to the composition of the sentences contained in the data corresponding to the logical semantic structure metadata of the research papers. In order to achieve the purpose, the structure of sentences corresponding to ‘Research Objectives’ and ‘Research Outcomes’ among the semantic structure metadata was analyzed based on the number of words, the link word types, the role of many-appeared words in sentences, and the end types of a word. As a result of this study, the number of words in the sentences was 38 in ‘Research Objectives’ and 212 in ‘Research Outcomes’. The link word types in ‘Research Objectives’ were occurred in the order such as Causality, Sequence, Equivalence, In-other-word/Summary relation, and the link word types in ‘Research Outcomes’ were appeared in the order such as Causality, Equivalence, Sequence, In-other-word/Summary relation. Analysis target words like ‘역할(Role)’, ‘요인(Factor)’ and ‘관계(Relation)’ played a similar role in both purpose and result part, but the role of ‘연구(Study)’ was little different. Finally, the verb endings in sentences were appeared many times such as ‘∼고자’, ‘∼였다’ in ‘Research Objectives’, and ‘∼었다’, ‘∼있다’, ‘∼였다’ in ‘Research Outcomes’. This study is significant as a fundamental research that can be utilized to automatically identify and input the metadata element reflecting the common logical semantics of research papers in order to support researchers’ scholarly sensemaking.
강범일. (2013). 토픽 모델링을 이용한 신문 자료의 오피니언 마이닝에 대한 연구. 한국문헌정보학회지, 47(4), 315-334. http://dx.doi.org/10.4275/KSLIS.2013.47.4.315.
고영만. (2011). 연구문헌의 지식구조를 반영하는 의미기반의 지식조직체계에 관한 연구. 정보관리학회지, 28(1), 145-170.
김민철. (2013). 트위터 상의 악의적 이용 자동분류. 한국문헌정보학회지, 47(1), 269-286. http://dx.doi.org/10.4275/KSLIS.2013.47.1.269.
김진옥. (2011). 한글 텍스트의 오피니언 분류 자동화 기법. 정보과학회논문지 : 데이타베이스, 38(6), 423-428.
미래창조과학부. (2015). 과학기술논문(SCI) 분석 연구. .
송민선. (2015). 한국학 연구 논문의 의미 구조 기반 메타데이터 연구. 한국도서관·정보학회지, 46(3), 277-299. http://dx.doi.org/10.16981/kliss.46.3.201509.277.
송민선. (2016). 한국학 연구 논문의 텍스트 구조 기반 메타데이터 검색 시스템 개발 연구. 정보관리학회지, 33(3), 155-176. http://dx.doi.org/10.3743/KOSIM.2016.33.3.155.
신준철. (2016). 한국어 의미분석을 위한 의미자원과 어휘의미분별. 정보과학회지, 34(8), 8-16.
안애림. (2012). 휴먼 오피니언 자동 분류 시스템 구현을 위한 비결정 오피니언 형용사 구문 처리. 정보과학회 컴퓨팅의 실제 논문지, 18(2), 158-162.
유사라. (2009). 연구자 중심 연구성과물 의미검색을 위한 인문사회 학술용어 온톨로지 적용 및 유지관리 체계 연구. 한국문헌정보학회지, 43(2), 277-298.
윤구호. (1999). 자동색인의 이론과 실제. 한국도서관․정보학회지, 30(3), 27-51.
윤성희. (2004). 단어 의미 정보를 활용하는 이용자 자연어 질의 유형의 효율적 분류. 정보관리학회지, 21(4), 251-264.
정영미. (1982). 자동색인(自動索引)의 통계적기법(統計的技法)과 한국어문헌(韓國語文獻)의 실험(實驗). 도서관학, 9, 99-118.
한국학술지인용색인. http://www.kci.go.kr.
한정기. (1998). 구문 패턴과 키워드 집합을 이용한자동 문서 분류의 성능 향상 (70-73). 한국정보과학회 인간과 컴퓨터 상호 작용 연구회 학술 대회 발표 논문집(HCI).
Harmsze, F. A. P.. (2000). A modular structure for scientific articles in an electronic environment.
Horn, R.. Teaching philosophy with argumentation maps.
Kando, N.. (1997). Text-level structure of research articles and its implication for text-based information processing systems (68-81). Proceedings of the 19th British Computer Society Annual Colloquium on Information Retrieval Research.
Kando, N.. (1999). Text structure analysis as a tool to make retrieved documents usable (126-135). Proceedings of the 4th International Workship on Information Retrieval with Asian Languages.
The Royal Society. (2011). Knowledge, networks, and nations: global scientific collaboration in the 21st century. RS Policy Document 03/11. https://royalsociety.org/~/media/Royal_Society_Content/policy/publications/2011/4294976134.pdf.