바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073
  • KCI

사전학습 된 언어 모델 기반의 양방향 게이트 순환 유닛 모델과 조건부 랜덤 필드 모델을 이용한 참고문헌 메타데이터 인식 연구

A Study on Recognition of Citation Metadata using Bidirectional GRU-CRF Model based on Pre-trained Language Model

정보관리학회지 / Journal of the Korean Society for Information Management, (P)1013-0799; (E)2586-2073
2021, v.38 no.1, pp.221-242
https://doi.org/10.3743/KOSIM.2021.38.1.221
지선영 (경기대학교 일반대학원 문헌정보학과)
최성필 (경기대학교 문헌정보학과)

초록

본 연구에서는 사전학습 된 언어 모델을 기반으로 양방향 게이트 순환 유닛 모델과 조건부 랜덤 필드 모델을 활용하여 참고문헌을 구성하는 메타데이터를 자동으로 인식하기 위한 연구를 진행하였다. 실험 집단은 2018년에 발행된 학술지 40종을 대상으로 수집한 PDF 형식의 학술문헌 53,562건을 규칙 기반으로 분석하여 추출한 참고문헌 161,315개이다. 실험 집합을 구축하기 위하여 PDF 형식의 학술 문헌에서 참고문헌을 분석하여 참고문헌의 메타데이터를 자동으로 추출하는 연구를 함께 진행하였다. 본 연구를 통하여 가장 높은 성능을 나타낸 언어 모델을 파악하였으며 해당 모델을 대상으로 추가 실험을 진행하여 학습 집합의 규모에 따른 인식 성능을 비교하고 마지막으로 메타데이터별 성능을 확인하였다.

keywords
참고문헌 메타데이터 인식, 텍스트 마이닝, 심층학습, 언어모델, reference metadata recognition, text mining, deep learning, language model

Abstract

This study applied reference metadata recognition using bidirectional GRU-CRF model based on pre-trained language model. The experimental group consists of 161,315 references extracted by 53,562 academic documents in PDF format collected from 40 journals published in 2018 based on rules. In order to construct an experiment set. This study was conducted to automatically extract the references from academic literature in PDF format. Through this study, the language model with the highest performance was identified, and additional experiments were conducted on the model to compare the recognition performance according to the size of the training set. Finally, the performance of each metadata was confirmed.

keywords
참고문헌 메타데이터 인식, 텍스트 마이닝, 심층학습, 언어모델, reference metadata recognition, text mining, deep learning, language model
투고일Submission Date
2021-02-25
수정일Revised Date
2021-03-06
게재확정일Accepted Date
2021-03-17

정보관리학회지