ISSN : 1013-0799
이 연구의 목적은 ChatGPT가 도서의 표지, 표제지, 판권기 데이터를 활용하여 생성한 더블린코어의 품질 평가를 통하여 ChatGPT의 메타데이터의 생성 능력과 그 가능성을 확인하는 데 있다. 이를 위하여 90건의 도서의 표지, 표제지와 판권기 데이터를 수집하여 ChatGPT에 입력하고 더블린 코어를 생성하게 하였으며, 산출물에 대해 완전성과 정확성 척도로 성능을 파악하였다. 그 결과, 전체 데이터에 있어 완전성은 0.87, 정확성은 0.71로 준수한 수준이었다. 요소별로 성능을 보면 Title, Creator, Publisher, Date, Identifier, Right, Language 요소가 다른 요소에 비해 상대적으로 높은 성능을 보였다. Subject와 Description 요소는 완전성과 정확성에 대해 다소 낮은 성능을 보였으나, 이들 요소에서 ChatGPT의 장점으로 알려진 생성 능력을 확인할 수 있었다. 한편, DDC 주류인 사회과학과 기술과학 분야에서 Contributor 요소의 정확성이 다소 낮았는데, 이는 ChatGPT의 책임표시사항 추출 오류 및 데이터 자체에서 메타데이터 요소용 서지 기술 내용의 누락, ChatGPT가 지닌 영어 위주의 학습데이터 구성 등에 따른 것으로 판단하였다.
The purpose of this study is to evaluate the Dublin Core metadata generated by ChatGPT using book covers, title pages, and colophons from a collection of books. To achieve this, we collected book covers, title pages, and colophons from 90 books and inputted them into ChatGPT to generate Dublin Core metadata. The performance was evaluated in terms of completeness and accuracy. The overall results showed a satisfactory level of completeness at 0.87 and accuracy at 0.71. Among the individual elements, Title, Creator, Publisher, Date, Identifier, Rights, and Language exhibited higher performance. Subject and Description elements showed relatively lower performance in terms of completeness and accuracy, but it confirmed the generation capability known as the inherent strength of ChatGPT. On the other hand, books in the sections of social sciences and technology of DDC showed slightly lower accuracy in the Contributor element. This was attributed to ChatGPT’s attribution extraction errors, omissions in the original bibliographic description contents for metadata, and the language composition of the training data used by ChatGPT.