- P-ISSN 2233-4203
- E-ISSN 2093-8950
In this study, comprehensive two dimension gas chromatography (2D GC-MS) and 15 T Fourier transform ion cyclotronresonance mass spectrometry (15T FT-ICR MS) connected to atmospheric pressure photo ionization (APPI) have beencombined to obtain detailed chemical composition of a diesel oil sample. With 2D GC-MS, compounds with aliphatic alkyl, saturatedcyclic ring(s), and one aromatic ring structures were mainly identified. Sensitivity toward aromatic compounds with morethan two aromatic rings was low with 2D GC-MS. In contrast, aromatic compounds containing up to four benzene rings wereidentified by APPI FT-ICR MS. Relatively smaller abundance of cyclic ring compounds were found but no aliphatic alkyl compoundswere observed by APPI FT-ICR MS. The data presented in this study clearly shows that 2D GC-MS and 15T FT-ICRMS provides different aspect of an oil sample and hence they have to be considered as complementary techniques to each otherfor more complete understanding of oil samples.
Silva, S. L. (2011). . Anal. Chimi. Acta, 707, 18-.
Ai-Thamir, W. K. (1988). . Fuel, 67, 871-.
Müller, A. L. H. (2012). . Spectro. Acta Part A: Mol. and Biomol. Spectro, 89, 82-.
Genov, G. (2008). . Org. Geochem, 39, 1229-.
Li, M. (2002). . Coll. and Surf. A: Phys. and Eng. Asp, 197, 193-.
Wang, Z. D. (2006). . Env. Foren, 7, 105-.
Marriott, P. J. (2001). . Chromatogr. A, 936, 1-.
Tabanca, N. (2005). . J. Chromatogr. A, 1097, 192-.
Dallüge, J. (2003). . J. Chromatogr. A, 1000, 69-.
Marriott, P. (2002). . TrAC Trends Anal. Chem, 21, 573-.
Marshall, A. G. (1985). . Acc. Chem. Res, 18, 316-.
Maikhunthod, B. (2010). . J. Chromatogr. A, 1217, 1522-.
Dutriez, T. (2010). . Fuel, 89, 2338-.
Flego, C. (2011). . Fuel, 90, 2863-.
Marsman, J. H. (2007). . J. Chromatogr. A, 1150, 21-.
Nizio, K. D. . J. Chromatogr. A, , -.
Eunkyoung Kim. (2011). Compositional Characterization of Petroleum Heavy Oils Generated from Vacuum Distillation and Catalytic Cracking by Positive-mode APPI FT-ICR Mass Spectrometry. Mass Spectrometry Letters, 2(2), 41-44. http://dx.doi.org/10.5478/MSL.2011.2.2.041.
Marshall, A. G. (1998). . Mass Spec. Rev, 17, 1-.
Rodgers R. P. (2002). . Fuel Chem. Div. Prep, 47, 636-.
Wang, J. (2011). . Chemosphere, 85, 609-.
Hughey, C. A. (2002). . Org. Geochem, 33, 743-.
Helms, J. R. (2012). . Org. Geochem, 44, 21-.
Miyabayashi, K. (2008). . Fuel Pro.Tech, 89, 397-.
Hur, M. (2009). (-). Interpretation of Crude Oil High Resolution Spectra obtained by ESI and APPI FT-ICR Mass Spectrometry using Principal Components Analysis In 57th ASMS Conference on Mass Spectrometry and Allied Topics.
Manhoi Hur. (2009). Optimized Automatic Noise Level Calculations for Broadband FT-ICR Mass Spectra of Petroleum Give More Reliable and Faster Peak Picking Results. Bulletin of the Korean Chemical Society, 30(11), 2665-2668.
Reichenbach, S. E. (2004). . Chemo. and Intell. Lab. Sys, 71, 107-.
Murphy, R. E. (1998). . Anal. Chem, 70, 1585-.
Reichenbach, S. E. (2003). . J. Chromatogr. A, 985, 47-.
Kallio, M. (2007). . J. Chromatogr. A, 1148, 228-.
Vendeuvre, C. (2005). . J. Chromatogr. A, 1086, 21-.
Adam, F. (2008). . J. Chromatogr. A, 1186, 236-.
Cookson, D. J. (1987). . Fuel, 66, 758-.
Dutriez, T. (2012). . Fuel, 96, 108-.
Adahchour, M. (2006). . TrAC Tren. in Anal. Chem, 25, 726-.