• P-ISSN2233-4203
  • E-ISSN2093-8950
  • ESCI, SCOPUS, KCI

Article Detail

Home > Article Detail
  • P-ISSN 2233-4203
  • E-ISSN 2093-8950

Enrichment Strategies for Identification and Characterization of Phosphoproteome

Mass Spectrometry Letters / Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2015, v.6 no.2, pp.31-37
https://doi.org/10.5478/MSL.2015.6.2.31
Lee Sun Young (Kyung Hee University)
Kang Dukjin (Korea Research Institute of Standards and Science)
Hong Jongki (Kyung Hee University)
  • 488Downloaded
  • 761Viewed

Abstract

Phosphorylation upon protein is well known to a key regulator that implicates in modulating many cellular processes like growth, migration, and differentiation. Up to date, grafting of multidimensional separation techniques onto advanced mass spectrometry (MS) has emerged as a promising tool for figuring out the biological functions of phosphorylation in a cell. However, advanced MS-based phosphoproteomics is still challenging, due to its intrinsic issues, i.e., low stoichiometry, less susceptibility in positive ion mode, and low abundance in biological sample. To overcome these bottlenecks, diverse techniques (e.g., SCX, HILIC, ERLIC, IMAC, TiO2, etc.) are continuously developed for on-/off-line enrichment of phosphorylated protein (or peptide) from biological samples, thereby helping qualitative/quantitative determination of phosphorylated protein and its phosphorylated sites. In this review, we introduce to the overall views of enrichment tools that are universally used to selectively isolate targeted phosphorylated protein (or peptide) from ordinary ones before MS-based phospoproteomic analysis.

keywords
phosphoproteomics, fractionation, enrichment, nLC-ESI-MS/MS


Reference

1

Qian, W. -J.. (2003). . Anal. Chem, 75, 5441-.

2

Yan, Y.. (2014). . Anal. Chem, , -.

3

Atakay, M.. (2012). . Anal. Chem, 84, 2713-.

4

Tan, Y. -J.. (2013). . Anal. Chem, 85, 5699-.

5

Marmelstein, A.M.. (2014). . Am. Chem. Soc, 136, 108-.

6

Tsai, C. -F.. (2008). . J. Proteome Res, 7, 4058-.

7

Imamura, H.. (2013). . J. Proteome Res, 13, 3410-.

8

Boehm, M. E.. (2014). . J. Proteome Res, 13, 5685-.

9

Glibert, P.. (2015). . J. Proteome Res, 14, 839-.

10

Qin, W.. (2010). . Anal. Chem, 82, 9461-.

11

Lu, Z.. (2010). . Anal. Chem, 82, 7249-.

12

Kweon, H. K.. (2006). . Anal. Chem, 78, 1743-.

13

Wang, X.. (2011). . J. Proteome Res, 10, 3920-.

14

Mertins, P.. (2012). . Mol. Cell. Proteomics, 11, -.

15

Lee, J. O.. (2015). . Anal. Chem, 87, 1257-.

16

Yue, X. -S.. (2013). . J. Proteome Res, 12, 4176-.

17

Wang, M. -C.. (2015). . Anal. Bioanal. Chem, 407, 1343-.

18

Leitner, A.. (2010). . Anal. Chem, 82, 2726-.

19

Wang, S. -T.. (2012). Y. -Q. Anal. Chem. 2012. Anal. Chem, 84, 7763-.

20

Madden, J. M.. (2014). . Breast Cancer Res. Treat, 147, 283-.

21

Ye, X.. (2014). . Electrophoresis, 35, 3479-.

22

Wiheratne, A. B.. (2013). . J. Proteome Res, 12, 4268-.

23

Kwon, O. K.. (2014). . Proteome Res, 13, 1327-.

24

Chen, Z.. (2014). . J. Proteome Res, 13, 2511-.

25

Tan, H.. (2015). . Proteomics, 15, 500-.

26

Batth, T. S.. (2014). . J. Proteome Res, 13, 6176-.

27

Lee, J. H.. (2012). . J. Proteome Res, 11, 4373-.

28

Zhou, H.. (2013). . Proteome Res, 12, 260-.

29

Engholm-Keller, K.. (2011). . J. Proteome Res, 10, 5383-.

30

Zappacosta, F.. (2015). . J. Proteome Res, 14, 997-.

31

Alpert, A.. (2008). . J. Anal. Chem, 80, 62-.

32

Loroch, S.. (2015). . Anal. Chem, 87, 1596-.

33

Hao, P.. (2011). . J. Proteome Res, 10, 5568-.

34

Kettenbach, A. N.. (2011). . Anal. Chem, 83, 7635-.

35

Matic, K.. (2014). . J. Proteome Res, 13, 4388-.

36

Misra, S. K.. (2014). . J. Proteome Res, 13, 6046-.

37

Oppermann, F. S.. (2013). . J. Proteome Res, 12, 4089-.

38

Huang, J.. (2014). . J. Proteome Res, 13, 3896-.

39

Chien, K.. (2011). . J. Proteome Res, 10, 4041-.

40

Tape, C. J.. (2014). . Jørgensen, C. Anal. Chem, 86, 10296-.

41

Matheron, L.. (2014). . Anal. Chem, 86, 8312-.

42

Matheron, L.. (2011). . Anal. Chem, 83, 3003-.

43

Lassowskat, I.. (2013). . Proteomics, 1, 254-.

44

Wang, L.. (2014). . Anal. Chem, 86, 6741-.

45

Sweet, S. M. M.. (2006). . J. Anal. Chem, 78, 7563-.

46

Hansen, T. A.. (2012). . Anal. Chem, 84, 9694-.

47

Lai, A. C. -Y.. (2012). . Rapid Commun. Mass Spectrom, 26, 2186-.

48

Hennrich, M. L.. (2011). . Anal. Chem, 83, 7137-.

49

Beausoleil, S. A.. (2006). . Nat. Biotechnol, 24, 1285-.

50

Zarei, M.. (2011). . J. Proteome Res, 10, 3474-.

51

Tsai, C. -F.. (2014). . Anal. Chem, 86, 685-.

52

Saeed, A.. (2013). . Anal. Chem, 85, 8979-.

53

Fíla, J.. (2012). . Amino Acids, 43, 1025-.

54

Tang, L. A. L.. (2012). . Anal. Chem, 84, 6693-.

55

Pinkes, M. W. H.. (2008). . J. Proteome Res, 7, 687-.

56

Larsen, M. R.. (2005). . Mol. Cell. Proteomics, 4, 873-.

57

Eriksson, A.. (2011). . Anal. Chem, 83, 761-.

58

Erickson, B. K.. (2015). . Anal. Chem, 87, 1241-.

59

Nie, S.. (2010). . J. Proteome Res, 9, 4585-.

60

Fukuda, I.. (2013). . J. Proteome Res, 12, 5587-.

61

Zhao, X.. (2013). . J. Proteome Res, 12, 2467-.

62

Lemeer, S.. (2008). . Mol. Cell. Proteomics, 7, 2176-.

63

Raijmakers, R.. (2010). . Anal. Chem, 82, 824-.

64

Zhou, H.. (2001). . Nat. Biotechnol, 19, 375-.

65

McLachlin, D. T. (2003). . Anal. Chem, 75, 6826-.

66

Goshe, M. B.. (2001). . Anal. Chem, 73, 2578-.

67

Janek, K.. (2001). . Rapid Commun. Mass Spectrom, 15, 1593-.

68

Grimsrud, P. A.. (2010). . ACS Chem. Biol, 5, 105-.

Submission Date
2015-05-11
Revised Date
2015-06-17
Accepted Date
2015-06-17
  • 488Downloaded
  • 761Viewed
  • 0KCI Citations
  • 0WOS Citations

Recommanded Articles

Mass Spectrometry Letters