ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

  • P-ISSN2233-4203
  • E-ISSN2093-8950
  • ESCI, SCOPUS, KCI

논문 상세

Home > 논문 상세
  • P-ISSN 2233-4203
  • E-ISSN 2093-8950

Loss of Potential Biomarker Proteins Associated with Abundant Proteins during Abundant Protein Removal in Sample Pretreatment

Mass Spectrometry Letters / Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2018, v.9 no.2, pp.51-55
https://doi.org/10.5478/MSL.2018.9.2.51
Jihoon Shin (Wonkwang University)
Jinwook Lee (Wonkwang University)
Wonryeon Cho (Wonkwang University)
  • 다운로드 수
  • 조회수

Abstract

Capture of non-glycoproteins during lectin affinity chromatography is frequently observed, although it would seem to be anomalous. In actuality, lectin affinity chromatography works at post-translational modification (PTM) sites on a glycopro- tein which is not involved in protein-protein interactions (PPIs). In this study, serial affinity column set (SACS) using lectins fol- lowed by proteomics methods was used to identify PPI mechanisms of captured proteins in human plasma. MetaCore, STRING, Ingenuity Pathway Analysis (IPA), and IntAct were individually used to elucidate the interactions of the identified abundant pro- teins and to obtain the corresponding interaction maps. The abundant non-glycoproteins were captured with the binding to the selected glycoproteins. Therefore, depletion process in sample pretreatment for abundant protein removal should be considered with more caution because it may lose precious disease-related low abundant proteins through PPIs of the removed abundant proteins in human plasma during the depletion process in biomarker discovery. Glycoproteins bearing specific glycans are fre- quently associated with cancer and can be specifically isolated by lectin affinity chromatography. Therefore, SACS using Lycop- ersicon esculentum lectin (LEL) can also be used to study disease interactomes.

keywords
Serial affinity column set (SACS), Lectin, Depletion, Abundant protein removal, Protein-protein interactions (PPIs), Biomarker


참고문헌

1

Azarkan, M.. (2007). . J. Chromatogr. B, 849, 81-. http://dx.doi.org/10.1016/j.jchromb.2006.10.056.

2

Gadjeva, M.. (2014). The Complement System: Methods and Protocols:Humana Press.

3

Gu, H.. (2016). . Mol. Cell. Proteomics, 15, 692-. http://dx.doi.org/10.1074/mcp.O115.052266.

4

Yang, N.. (2011). . Clin. Cancer Res., 17, 3349-. http://dx.doi.org/10.1158/1078-0432.CCR-10-3121.

5

Jung, K.. (2013). . Anal. Chem., 85, 7125-. http://dx.doi.org/10.1021/ac400653z.

6

Cho, W.. (2015). . Anal. Chem., 87, 9612-. http://dx.doi.org/10.1021/acs.analchem.5b00790.

7

Gbormittah, F. O.. (2014). . Bioanalysis, 6, 2537-. http://dx.doi.org/10.4155/bio.14.217.

8

Kohler, J. J.. (2013). Mass Spectrometry of Glycoproteins: Methods and Protocols:Humana Press.

9

Kim, B.. (2018). . Expert Rev. Proteomics, 15, 353-. http://dx.doi.org/10.1080/14789450.2018.1450631.

10

Deutsch, O.. (2015). . Rheumatology, 54, 884-. http://dx.doi.org/10.1093/rheumatology/keu405.

11

Buyuktiryaki, S.. (2016). . Sep. Sci. Technol., 51, 2080-. http://dx.doi.org/10.1080/01496395.2016.1200086.

12

Balmana, M.. (2015). . Clin. Chim. Acta, 442, 56-. http://dx.doi.org/10.1016/j.cca.2015.01.007.

13

Mortezai, N.. (2010). . J. Proteome Res., 9, 6126-. http://dx.doi.org/10.1021/pr100224y.

14

Kang, U. -B.. (2010). . BMC Cancer, 10, 114-. http://dx.doi.org/10.1186/1471-2407-10-114.

15

Jung, K.. (2009). . J. Proteome Res., 8, 643-. http://dx.doi.org/10.1021/pr8007495.

16

Jihoon Shin. (2016). Differentiation of Glycan Diversity with Serial Affinity Column Set (SACS). Mass Spectrometry Letters, 7(3), 74-78. http://dx.doi.org/10.5478/MSL.2016.7.3.74.

17

Larkin, S. E. T.. (2016). . Br. J. Cancer, 115, 1078-. http://dx.doi.org/10.1038/bjc.2016.291.

투고일Submission Date
2018-05-15
수정일Revised Date
2018-05-17
게재확정일Accepted Date
2018-05-17
상단으로 이동

Mass Spectrometry Letters