바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

AN EXTENSION OF THE FUGLEDGE-PUTNAM THEOREM TO <TEX>$\omega$</TEX>-HYPONORMAL OPERATORS

AN EXTENSION OF THE FUGLEDGE-UTNAM THEOREM TO w-HYPONORMAL PERATORS

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2003, v.10 no.4, pp.273-277
Cha, Hyung Koo (Dept. of Mathematics, Hanyang Univ.)

Abstract

The Fuglede-Putnam Theorem is that if A and B are normal operators and X is an operator such that AX = XB, then <TEX>$A^{\ast}= X<T^{\ast}B^{\ast}$</TEX>. In this paper, we show that if A is <TEX>$\omega$</TEX>-hyponormal and <TEX>$B^{\ast}$</TEX> is invertible <TEX>$\omega$</TEX>-hyponormal such that AX = XB for a Hilbert-Schmidt operator X, then <TEX>$A^{\ast}X = XB^{\ast}$</TEX>.

keywords
w-hyponormal, Hilbert-Schmidt operator

한국수학교육학회지시리즈B:순수및응용수학