ISSN : 1226-0657
Let T be an integral domain, M a nonzero maximal ideal of T, K = T/M, <TEX>$\psi$</TEX>: T \longrightarrow K the canonical map, D a proper subring of K, and R = <TEX>$\psi^{-1}$</TEX>(D) the pullback domain. Assume that for each <TEX>$x \; \in T$</TEX>, there is a <TEX>$u \; \in T$</TEX> such that u is a unit in T and <TEX>$ux \; \in R$</TEX>, . In this paper, we show that R is a weakly Krull domain (resp., GWFD, AWFD, WFD) if and only if htM = 1, D is a field, and T is a weakly Krull domain (resp., GWFD, AWFD, WFD).