ISSN : 1226-0657
<TEX>$H_v$</TEX>-rings first were introduced by Vougiouklis in 1990. The largest class of algebraic systems satisfying ring-like axioms is the <TEX>$H_v$</TEX>-ring. Let R be an <TEX>$H_v$</TEX>-ring and <TEX>${\gamma}_R$</TEX> the smallest equivalence relation on R such that the quotient <TEX>$R/{\gamma}_R$</TEX>, the set of all equivalence classes, is a ring. In this case <TEX>$R/{\gamma}_R$</TEX> is called the fundamental ring. In this short communication, we study the fundamental rings with respect to the product of two fuzzy subsets.