바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

On (σ, τ)-Derivations of Prime Rings

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2006, v.13 no.3, pp.189-195
Kaya K.
Guven E.
Soyturk M.

Abstract

Let R be a prime ring with characteristics not 2 and <TEX>${\sigma},\;{\tau},\;{\alpha},\;{\beta}$</TEX> be auto-morphisms of R. Suppose that <TEX>$d_1$</TEX> is a (<TEX>${\sigma},\;{\tau}$</TEX>)-derivation and <TEX>$d_2$</TEX> is a (<TEX>${\alpha},\;{\beta}$</TEX>)-derivation on R such that <TEX>$d_{2}{\alpha}\;=\;{\alpha}d_2,\;d_2{\beta}\;=\;{\beta}d_2$</TEX>. In this note it is shown that; (1) If <TEX>$d_1d_2$</TEX>(R) = 0 then <TEX>$d_1$</TEX> = 0 or <TEX>$d_2$</TEX> = 0. (2) If [<TEX>$d_1(R),d_2(R)$</TEX>] = 0 then R is commutative. (3) If(<TEX>$d_1(R),d_2(R)$</TEX>) = 0 then R is commutative. (4) If <TEX>$[d_1(R),d_2(R)]_{\sigma,\tau}$</TEX> = 0 then R is commutative.

keywords
prime ring, (&lt, TEX&gt, ${\sigma}, \, {\tau}$&lt, /TEX&gt, )-derivation, (&lt, TEX&gt, ${\sigma}, \, {\tau}$&lt, /TEX&gt, )-Lie ideal

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics