바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

ON (<TEX>${\sigma},\;{\tau}$</TEX>)-DERIVATIONS OF PRIME RINGS

On (σ, τ)-Derivations of Prime Rings

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2006, v.13 no.3, pp.189-195
Kaya K. (CANAKKALE ONSEKIZ MART UNIVERSITY, FACULTY OF ARTS AND SCIENCES, DEPARTMENT OF MATHEMATICS)
Guven E. (KOCAELI UNIVERSITY, FACULTY OF ARTS AND SCIENCES, DEPARTMENT OF MATHEMATICS)
Soyturk M. (KOCAELI UNIVERSITY, FACULTY OF ARTS AND SCIENCES, DEPARTMENT OF MATHEMATICS)

Abstract

Let R be a prime ring with characteristics not 2 and <TEX>${\sigma},\;{\tau},\;{\alpha},\;{\beta}$</TEX> be auto-morphisms of R. Suppose that <TEX>$d_1$</TEX> is a (<TEX>${\sigma},\;{\tau}$</TEX>)-derivation and <TEX>$d_2$</TEX> is a (<TEX>${\alpha},\;{\beta}$</TEX>)-derivation on R such that <TEX>$d_{2}{\alpha}\;=\;{\alpha}d_2,\;d_2{\beta}\;=\;{\beta}d_2$</TEX>. In this note it is shown that; (1) If <TEX>$d_1d_2$</TEX>(R) = 0 then <TEX>$d_1$</TEX> = 0 or <TEX>$d_2$</TEX> = 0. (2) If [<TEX>$d_1(R),d_2(R)$</TEX>] = 0 then R is commutative. (3) If(<TEX>$d_1(R),d_2(R)$</TEX>) = 0 then R is commutative. (4) If <TEX>$[d_1(R),d_2(R)]_{\sigma,\tau}$</TEX> = 0 then R is commutative.

keywords
prime ring, (&lt, TEX&gt, ${\sigma}, \, {\tau}$&lt, /TEX&gt, )-derivation, (&lt, TEX&gt, ${\sigma}, \, {\tau}$&lt, /TEX&gt, )-Lie ideal

한국수학교육학회지시리즈B:순수및응용수학