바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

ON CONTINUOUS LINEAR JORDAN DERIVATIONS OF BANACH ALGEBRAS

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2009, v.16 no.2, pp.227-241
Park, Kyoo-Hong
Kim, Byung-Do

Abstract

Let A be a Banach algebra. Suppose there exists a continuous linear Jordan derivation D : A <TEX>$\rightarrow$</TEX> A such that <TEX>$[D(x),\;x]D(x)^2[D(x),\;x]\;{\in}\;rad(A)$</TEX> for all <TEX>$x\;{\in}\;A$</TEX>. Then we have D(A) <TEX>$\subseteq$</TEX> rad(A).

keywords
prime and semi prime ring, derivation, Jordan derivation, Banach algebra, (Jacobson) radical

Reference

1.

(1988). . Annals of Math., 128, 435-460.

2.

(2002). . Commun. Korean Math. Soc., 17(4), 607-618.

3.

(2008). . J. Korea Soc. Math. Educ. Ser. B : Pure Appl. Math., 15(3), 259-296.

4.

(1970). . Proc. Amer. Math. Soc., 24, 209-214.

5.

(1992). . Proc. Amer. Math. Soc., 116(4), 877-884.

6.

(2007). . J. Korea Soc. Math. Educ. Ser. B : Pure Appl. Math., 14, 271-278.

7.

(1991). . Glasnik Mathematicki, 26(46), 83-88.

8.

(2008). . Aequationes. Math., 75, 260-266.

9.

(1968). . Amer. J. Math., 90, 1067-1073.

10.

(1994). . Arch. Math., 63, 56-59.

11.

(1981). . Canad. Math. Bull., 24(4), 415-421.

12.

(2000). . Acta Mathematica Sinica, 16(1), 21-28.

13.

(1955). . Math. Ann., 129, 260-264.

14.

(1988). . Proc. Amer. Math. Soc., 104(4), 1003-1006.

15.

16.

(2008). . J. Korea Soc. Math. Educ. Ser. B : Pure Appl. Math., 15(2), 179-201.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics