ISSN : 1226-0657
Let A be a Banach algebra. Suppose there exists a continuous linear Jordan derivation D : A <TEX>$\rightarrow$</TEX> A such that <TEX>$[D(x),\;x]D(x)^2[D(x),\;x]\;{\in}\;rad(A)$</TEX> for all <TEX>$x\;{\in}\;A$</TEX>. Then we have D(A) <TEX>$\subseteq$</TEX> rad(A).
(1988). . Annals of Math., 128, 435-460.
(2002). . Commun. Korean Math. Soc., 17(4), 607-618.
(2008). . J. Korea Soc. Math. Educ. Ser. B : Pure Appl. Math., 15(3), 259-296.
(1970). . Proc. Amer. Math. Soc., 24, 209-214.
(1992). . Proc. Amer. Math. Soc., 116(4), 877-884.
(2007). . J. Korea Soc. Math. Educ. Ser. B : Pure Appl. Math., 14, 271-278.
(1991). . Glasnik Mathematicki, 26(46), 83-88.
(2008). . Aequationes. Math., 75, 260-266.
(1968). . Amer. J. Math., 90, 1067-1073.
(1994). . Arch. Math., 63, 56-59.
(1981). . Canad. Math. Bull., 24(4), 415-421.
(2000). . Acta Mathematica Sinica, 16(1), 21-28.
(1955). . Math. Ann., 129, 260-264.
(1988). . Proc. Amer. Math. Soc., 104(4), 1003-1006.
(2008). . J. Korea Soc. Math. Educ. Ser. B : Pure Appl. Math., 15(2), 179-201.