ISSN : 1226-0657
In this paper we establish various relationships among the generalized integral transform, the generalized convolution product and the first variation for functionals in a Banach algebra S(<TEX>$L_{a,b}^2$</TEX>[0, T]) introduced by Chang and Skoug in [14]. We then derive an inverse integral transform and obtain several relationships involving inverse integral transforms.
(1945). . Duke Math. J., 12, 489-507.
(1947). . Duke Math. J., 14, 99-107.
(1980). .
(2008). . J. Chungcheong Math. Soc., 21, 231-246.
(2009). . J. Korean Math. Soc., 46(2), 327-345.
(1981). . Pacific J. Math., 93, 313-324.
(2004). . Int. J. Math. Math. Soc., 11, 579-598.
(2003). . Rocky Mountain J. Math., 33, 1379-1393.
(1982). . J. Funct. Anal., 47, 153-164.
(2000). . Numer. Funct. Anal. Optim., 21, 97-105.
(0000). . J. Fourier Anal. Appl., .
(2003). . Trans. Amer. Math. Soc., 355, 2925-2948.
(2003). . Integral Transforms and Special Functions, 14, 375-393.
(1976). . Michigan Math. J., 23, 1-30.
(1971). . Illinois. J. Math., 15, 37-46.
(1996). . Rocky Mountain J. Math., 26, 37-62.
(1945). . Duke Math. J., 12, 485-488.
(1987). . Soochow. J. Math., 13, 165-174.
(2009). . J. Math. Soc. Math. Educ. Ser. B Pure Appl. Math., 16, 107-119.