바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

DISTRIBUTION OF ROOTS OF CUBIC EQUATIONS

DISTRIBUTION OF ROOTS OF CUBIC EQUATIONS

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2010, v.17 no.2, pp.185-188
Huang, Deqing (DEPARTMENT OF MATHEMATICS, SICHUAN UNIVERSITY)
Tang, Yilei (DEPARTMENT OF ELECTRIC AND COMPUTER ENGINEERIG, NATIONAL UNIVERSITY OF SINGAPORE)
Zhang, Weinian (DEPARTMENT OF MATHEMATICS, SHANGHAI JIAOTONG UNIVERSITY)

Abstract

In this note the distribution of roots of cubic equations in contrast to 0 is given, which is useful to discuss eigenvalues for qualitative properties of differential equations.

keywords
cubic equation, distribution of roots, discriminant

참고문헌

1.

(1994). . Dokl. Akad. Nauk Belarusi, 38(6), 5-8.

2.

Henriquez, Garcia. (1935). The Graphical Interpretation of the Complex Roots of Cubic Equations. The American Mathematical Monthly, 42(6), 383-384. 10.2307/2301359.

3.

LEBEDEV. (1991). . Russian Journal of Numerical Analysis and Mathematical Modelling, 6(4), 315-324. 10.1515/rnam.1991.6.4.315.

4.

McKelvey. (1984). . American Journal of Physics, 52(3), 269-270. 10.1119/1.13706.

5.

Pennisi, Louis L.. (1958). A Method for Finding the Real Roots of Cubic Equations by Using the Slide Rule. Mathematics Magazine, 31(4), 211-214. 10.2307/3029204.

6.

(1942). . An. Soc. Ci. Argentina, 134, 309.

한국수학교육학회지시리즈B:순수및응용수학