ISSN : 1226-0657
We investigate the existence of the following Dirichlet boundary value problem <TEX>$({\mid}u'\mid^{p-2}u')'\;+\;(p\;-\;1)[\alpha{\mid}u^+\mid^{p-2}u^+\;-\;\beta{\mid}u^-\mid^{p-2}u^-]$</TEX> = (p - 1)h(t), u(0) = u(T) = 0, where p > 1, <TEX>$\alpha$</TEX> > 0, <TEX>$\beta$</TEX> > 0 and <TEX>${\alpha}^{-\frac{1}{p}}\;+\;{\beta}^{-\frac{1}{p}}\;=\;2$</TEX>, <TEX>$T\;=\;{\pi}_p/{\alpha}^{\frac{1}{p}}$</TEX>, <TEX>${\pi}_p\;=\; \frac{2{\pi}}{p\;sin(\pi/p)}$</TEX> and <TEX>$h\;{\in}\;L^{\infty}$</TEX>(0,T). The results of this paper generalize some early results obtained in [8] and [9]. Moreover, the method used in this paper is elementary and new.
DELPINO. (1989). . Journal of Differential Equations, 80(1), 1-13. 10.1016/0022-0396(89)90093-4.
(1991). . Proc. Amer. Math. Soc., 112, 131-138.
(1997). . Appl. Math. Lett., 10, 77-82.
DELPINO. (1991). . Journal of Differential Equations, 92(2), 226-251. 10.1016/0022-0396(91)90048-E.
Binding, Paul A.;Drabek, Pavel;Huang, Yin Xi. (1997). On the Fredholm Alternative for the <TEX>$p$</TEX>-Laplacian. Proceedings of the American Mathematical Society, 125(12), 3555-3559. 10.1090/S0002-9939-97-03992-0.
(1999). . Diff. Integral Equations, 12, 773-788.
del Pino, M.;Drabek, P.;Manasevich, R.. (1999). The Fredholm Alternative at the First Eigenvalue for the One Dimensionalp-Laplacian. Journal of Differential Equations, 151(2), 386-419. 10.1006/jdeq.1998.3506.
Manasevich. (2002). . Proceedings of the London Mathematical Society, 84(2), 324-342. 10.1112/plms/84.2.324.
Yang, X.. (2004). The Fredholm alternative for the one-dimensional p-Laplacian. Journal of Mathematical Analysis and Applications, 299(2), 494-507. 10.1016/j.jmaa.2004.03.077.
(1988). . Trans. Amer. Math. Soc., 215, 419-431.
Drábek, Pavel;Girg, Petr;Manásevich, Raul. (2001). Generic Fredholm alternative-type results for the one dimensional p-Laplacian. Nonlinear Differential Equations and Applications, 8(3), 285-298. 10.1007/PL00001449.