바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

HYERS-ULAM STABILITY OF CUBIC-QUARTIC FUNCTIONAL EQUATIONS ON RANDOM NORMED SPACES

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2010, v.17 no.4, pp.373-388
Jang, Sun-Young
Kang, Kyung-Mook
  • Downloaded
  • Viewed

Abstract

We introduce mixed cubic-quartic functional equations. And using the fixed point method, we prove the generalized Hyers-Ulam stability of cubic-quartic functional equations on random normed spaces.

keywords
cubic functional equation, quartic functional equations, random normed space, Hyers-Ulam stability.

Reference

1.

(2009). . Abstract and Applied Analysis, .

2.

3.

Hyers, D. H.;Isac, G.;Rassias, Th. M.. (1998). On the Asymptoticity Aspect of Hyers-Ulam Stability of Mappings. Proceedings of the American Mathematical Society, 126(2), 425-430. 10.1090/S0002-9939-98-04060-X.

4.

5.

Gavruta, P.. (1994). A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings. Journal of Mathematical Analysis and Applications, 184(3), 431-436. 10.1006/jmaa.1994.1211.

6.

(1941). . Proc. Amer. Math. Soc., 27, 222-224.

7.

Cholewa. (1984). . Aequationes Mathematicae, 27(1), 76-86. 10.1007/BF02192660.

8.

AOKI. (1950). . Journal of the Mathematical Society of Japan, 2(1-2), 64-66. 10.2969/jmsj/00210064.

9.

(2004). . Grazer Math. Ber., 346, 43-52.

10.

(1989). . C. R. Math. Rep. Acad. Sci. Canada, 11, 215-220.

11.

(1997). . Internat. Ser. Numer., 123, 297-309.

12.

Czerwik. (1992). . Abhandlungen aus dem Mathematischen Seminar der Universit채t Hamburg, 62(1), 59-64. 10.1007/BF02941618.

13.

(2008). . Abstract and Applied Analysis, .

14.

15.

16.

17.

Skof. (1983). . Rendiconti del Seminario Matematico e Fisico di Milano, 53(1), 113-129. 10.1007/BF02924890.

18.

(1963). . Dokl. Akad. Nauk SSSR, 149, 280-283.

19.

(1960). . Pacific J. Math., 10, 313-334.

20.

Rassias, Themistocles M.. (1978). On the Stability of the Linear Mapping in Banach Spaces. Proceedings of the American Mathematical Society, 72(2), 297-300. 10.1090/S0002-9939-1978-0507327-1.

21.

(1985). . Discuss. Math., 7, 193-196.

22.

23.

Mirmostafaee, A.K.;Moslehian, M.S.. (2008). Fuzzy versions of Hyers-Ulam-Rassias theorem. Fuzzy Sets and Systems, 159(6), 720-729. 10.1016/j.fss.2007.09.016.

24.

RASSIAS. (1982). . Journal of Functional Analysis, 46(1), 126-130. 10.1016/0022-1236(82)90048-9.

25.

Gajda. (1991). . International Journal of Mathematics and Mathematical Sciences, 14(3), 431-434. 10.1155/S016117129100056X.

26.

Jun, K.-W.;Kim, H.-M.. (2002). The generalized Hyers-Ulam-Rassias stability of a cubic functional equation. Journal of Mathematical Analysis and Applications, 274(2), 867-878. 10.1016/S0022-247X(02)00415-8.

27.

(0000). . Discrete Dynamics an Nature and Secrety, .

28.

(2009). . Rocky Moutain Joural of Mathematics, 39.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics