ISSN : 1226-0657
In this paper we obtain the Hyers-Ulam stability of functional equations <TEX>$f(x+y)=f(x)+f(y)+In\;{\alpha}^{2xy-1}$</TEX> and <TEX>$f(x+y)=f(x)+f(y)+In\;{\beta(x,y)^{-1}$</TEX> which is related to the exponential and beta functions.
Lee, Y.W.;Choi, B.M.. (2004). The stability of Cauchy's gamma-beta functional equation. Journal of Mathematical Analysis and Applications, 299(2), 305-313. 10.1016/j.jmaa.2003.12.050.
Jun, K.-W.;Lee, Y.-H.. (2004). A generalization of the Hyers-Ulam-Rassias stability of the Pexiderized quadratic equations. Journal of Mathematical Analysis and Applications, 297(1), 70-86. 10.1016/j.jmaa.2004.04.009.
(2007). . J. Chungcheong Math Soc., 20, 503-514.
(2002). . Math. Inequal. Appl., 5, 707-710.
Rassias, Themistocles M.;Semrl, Peter. (1992). On the Behavior of Mappings which do not Satisfy Hyers-Ulam Stability. Proceedings of the American Mathematical Society, 114(4), 989-993. 10.1090/S0002-9939-1992-1059634-1.
Gavruta, P.. (1994). A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings. Journal of Mathematical Analysis and Applications, 184(3), 431-436. 10.1006/jmaa.1994.1211.
Hyers, D H. (1941). On the Stability of the Linear Functional Equation.. Proceedings of the National Academy of Sciences, 27(4), 222-224. 10.1073/pnas.27.4.222.
Lee, Y.W.. (2002). On the stability of a quadratic Jensen type functional equation. Journal of Mathematical Analysis and Applications, 270(2), 590-601. 10.1016/S0022-247X(02)00093-8.
(2000). . Bull. Institute of Math. Academia Sinica, 28, H3-H6.
Lee, Y.W.;Choi, B.M.. (2004). The stability of Cauchy's gamma-beta functional equation. Journal of Mathematical Analysis and Applications, 299(2), 305-313. 10.1016/j.jmaa.2003.12.050.
Gilányi, A.. (2001). Eine zur Parallelogrammgleichung äquivalente Ungleichung. Aequationes Mathematicae, 62(3), 303-309. 10.1007/PL00000156.
Fechner, Włodzimierz. (2006). Stability of a functional inequality associated with the Jordan – von Neumann functional equation. Aequationes mathematicae, 71(1), 149-161. 10.1007/s00010-005-2775-9.
Gajda. (1991). . International Journal of Mathematics and Mathematical Sciences, 14(3), 431-434. 10.1155/S016117129100056X.
Rätz, Jürg. (2003). On inequalities associated with the Jordan-von Neumann functional equation. Aequationes Mathematicae, 66(1), 191-2000. 10.1007/s00010-003-2684-8.
Rassias, Themistocles M.. (1978). On the Stability of the Linear Mapping in Banach Spaces. Proceedings of the American Mathematical Society, 72(2), 297-300. 10.1090/S0002-9939-1978-0507327-1.