바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

AN ENERGY DENSITY ESTIMATE OF HEAT EQUATION FOR HARMONIC MAP

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2011, v.18 no.1, pp.79-86
https://doi.org/10.7468/jksmeb.2011.18.1.079
Kim, Hyun-Jung
  • Downloaded
  • Viewed

Abstract

Suppose that (M,g) is a complete and noncompact Riemannian mani-fold with Ricci curvature bounded below by <TEX>$-K{\leq}0$</TEX> and (N, <TEX>$\bar{g}$</TEX>) is a complete Riemannian manifold with nonpositive sectional curvature. Let u : <TEX>$M{\times}[0,{\infty}){\rightarrow}N$</TEX> be the solution of a heat equation for harmonic map with a bounded image. We estimate the energy density of u.

keywords
heat equation for harmonic map, energy density, Liouville Theorem

Reference

1.

(1991). . J. Funct. Anal., 99, 293-331. 10.1016/0022-1236(91)90043-5.

2.

(1980). .

3.

(1982). . Proc. Amer. Math. Soc., 85, 91-94. 10.1090/S0002-9939-1982-0647905-3.

4.

(1998). . J. Geom. Anal., 8(4), 515-531. 10.1007/BF02921710.

5.

(1984). . Duke Math. J., 51, 667-673. 10.1215/S0012-7094-84-05131-7.

6.

(1973). . Pacific J. Math., 46, 45-109. 10.2140/pjm.1973.46.45.

7.

(1993). . Comm. Anal. Geom., 1, 113-126.

8.

(1989). . Annals of Prob., 17, 1248-1254. 10.1214/aop/1176991267.

9.

(1986). . Acta Math., 156, 153-201. 10.1007/BF02399203.

10.

(1991). . Invent. Math., 105, 1-46. 10.1007/BF01232256.

11.

12.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics