ISSN : 1226-0657
We provide a semilocal convergence result for approximating a solution of a singular system with constant rank derivatives, using Newton's method in an Euclidean space setting. Our approach uses more precise estimates and a combination of two Lipschitz-type conditions leading to the following advantages over earlier works [13], [16], [17], [29]: tighter bounds on the distances involved, and a more precise information on the location of the solution. Numerical examples are also provided in this study.
(2007). . J. Comput. Math., 25, 705-718.
(2008). . J. Math. Anal. Appl., 345, 689-701. 10.1016/j.jmaa.2008.04.009.
(1999). . Math. Comp., 68(255), 169-186. 10.1090/S0025-5718-99-00999-0.
(2009). . J. Comput. Appl. Math., 228, 115-122. 10.1016/j.cam.2008.08.042.
(2005). . Adv. Nonlinear Var. Inequal., 8, 93-99.
(2004). . J. Math. Anal. Appl., 298, 374-397. 10.1016/j.jmaa.2004.04.008.
(1996). . SIAM J. Numer. Anal., 33, 128-148. 10.1137/0733008.
(2004). . Comput. Math. Appl., 47, 1057-1067. 10.1016/S0898-1221(04)90086-7.
(1993). . Numer. Math., 66, 235-257. 10.1007/BF01385696.
(2007). . Numer. Funct. Anal. Optim., 28, 663-679. 10.1080/01630560701348509.
(2010). . J. Complexity, 26, 268-295. 10.1016/j.jco.2010.02.001.
(2008). . J. Comput. Appl. Math., 219, 110-122. 10.1016/j.cam.2007.07.006.
(2001). . J. Optim. Theory Appl., 109, 631-648. 10.1023/A:1017571906739.
(1986). . Numer. Math., 48, 119-125. 10.1007/BF01389446.
(1997). . J. Comput. Appl. Math., 79, 131-145. 10.1016/S0377-0427(97)81611-1.
(2000). . IMA J. Numer. Anal., 20, 521-532. 10.1093/imanum/20.4.521.
(2002). . J. Complexity, 18, 187-209. 10.1006/jcom.2001.0612.
(2000). . Math. Comp., 69, 1099-1115.
(2004). . J. Comput. Appl. Math., 169, 315-332. 10.1016/j.cam.2004.01.029.
(2009). . Surveys Math. Appl, 4, 119-132.