바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

ASYMPTOTIC BEHAVIORS OF JENSEN TYPE FUNCTIONAL EQUATIONS IN HALF PLANES

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2011, v.18 no.2, pp.113-128
https://doi.org/10.7468/jksmeb.2011.18.2.113
Kim, Sang-Youp
Kim, Gyu-Tae
Lee, Gi-Hui
Lee, Jae-Ho
Park, Gwang-Hyun
  • Downloaded
  • Viewed

Abstract

Let f : <TEX>${\mathbb{R}}{\rightarrow}{\mathbb{C}}$</TEX>. We consider the Hyers-Ulam stability of Jensen type functional inequality <TEX>$$|f(px+qy)-Pf(x)-Qf(y)|{\leq}{\epsilon}$$</TEX> in the half planes {(x, y) : <TEX>$kx+sy{\geq}d$</TEX>} for fixed d, k, <TEX>$s{\in}{\mathbb{R}}$</TEX> with <TEX>$k{\neq}0$</TEX> or <TEX>$s{\neq}0$</TEX>. As consequences of the results we obtain the asymptotic behaviors of f satisfying <TEX>$$|f(px+qy)-Pf(x)-Qf(y)|{\rightarrow}0$$</TEX> as <TEX>$kx+sy{\rightarrow}{\infty}$</TEX>.

keywords
Hyers-Ulam stability, Jensen type functional equation, Pexider equation

Reference

1.

(2009). . Acta Mathematica Hungarica, 125, 287-299. 10.1007/s10474-009-9019-8.

2.

(1983). . Atii Accad. Sci.Torino Cl. Sci. Fis. Mat. Natur., 117, 377-389.

3.

4.

(2003). . J. Math. Anal. Appl., 281, 516-524. 10.1016/S0022-247X(03)00136-7.

5.

(2009). . Nonlinear Analysis TMA, 70, 2673-2684. 10.1016/j.na.2008.03.054.

6.

(2002). . J. Math. Anal. Appl., 276, 747-762. 10.1016/S0022-247X(02)00439-0.

7.

(1978). . Proc. Amer. Math. Soc., 72, 297-300. 10.1090/S0002-9939-1978-0507327-1.

8.

(2010). . Appl. Math. Letters, 23, 156-160. 10.1016/j.aml.2009.09.004.

9.

(2009). . Appl. Math. Letters, 31, 439-443.

10.

(2009). . Aequationes Math., 77, 33-88. 10.1007/s00010-008-2945-7.

11.

(2008). . Bull. Sci. Math., 132, 87-96. 10.1016/j.bulsci.2006.07.004.

12.

(1941). . Proc. Nat. Acad. Sci. USA, 27, 222-224. 10.1073/pnas.27.4.222.

13.

14.

15.

(1998). . Proc. Amer. Math. Soc., 126, 3137-3143. 10.1090/S0002-9939-98-04680-2.

16.

(2006). . Acta Mathematica Sinica, English Series, 22(6), 1781-1788. 10.1007/s10114-005-0736-9.

17.

(2009). . The Austr. J. Math. Anal. Appl., 6, 1-10.

18.

(2010). . Nonlinear Analysis TMA, 72, 2929-2934.

19.

(1987). . Abh. Math. Sem. Univ. Hamburg, 57, 215-226. 10.1007/BF02941612.

20.

(1950). . Proc. Nat. Academy Sci. of U.S.A., 36, 564-570. 10.1073/pnas.36.10.564.

21.

(2010). . Acta Mathematica Hungarica, 128, 139-149. 10.1007/s10474-010-9169-8.

22.

(1951). . Bull. Amer. Math. Soc., 57, 223-237. 10.1090/S0002-9904-1951-09511-7.

23.

(2009). . Nonlinear Analysis TMA, 71, 4396-4404. 10.1016/j.na.2009.02.123.

24.

(2008). . J. Math. Anal. Appl., 339, 303-311. 10.1016/j.jmaa.2007.07.001.

25.

(2008). . J. Math. Anal. Appl., 340, 424-432. 10.1016/j.jmaa.2007.08.009.

26.

(1950). . J. Math. Soc. Japan, 2, 64-66. 10.2969/jmsj/00210064.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics