ISSN : 1226-0657
In this paper, we construct a cover (<TEX>$\mathcal{L}(X)$</TEX>, <TEX>$c_X$</TEX>) of a space X such that for any cloz-cover (Y, f) of X, there is a covering map g : <TEX>$Y{\longrightarrow}\mathcal{L}(X)$</TEX> with <TEX>$c_X{\circ}g=f$</TEX>. Using this, we show that every Tychonoff space X has a minimal cloz-cover (<TEX>$E_{cc}(X)$</TEX>, <TEX>$z_X$</TEX>) and that for a strongly zero-dimensional space X, <TEX>${\beta}E_{cc}(X)=E_{cc}({\beta}X)$</TEX> if and only if <TEX>$E_{cc}(X)$</TEX> is <TEX>$z^{\sharp}$</TEX>-embedded in <TEX>$E_{cc}({\beta}X)$</TEX>.
(1987). . Trans. Amer. Math. Soc., 303, 779-804.
(1989). . Dissertationes Mathematicae, 283, 5-31.
(1963). . Sov. Math. Dokl., 4, 295-298.
(1997). . J. Korean Soc. Math. Edu., 4, 151-159.
(1984). . Topol. Appl., 17, 217-232. 10.1016/0166-8641(84)90043-9.